Evaluation of heliostat field global tracking error distributions by Monte Carlo simulations

被引:13
作者
Diaz-Felix, L. A. [1 ]
Escobar-Toledo, M. [2 ]
Waissman, J. [3 ]
Pitalua-Diaz, N. [1 ]
Arancibia-Bulnes, C. A. [1 ,4 ]
机构
[1] Univ Sonora, Dept Ingn Ind, Blvd Encinas & Rosales S-N,Col Ctr, Hermosillo 83000, Sonora, Mexico
[2] Benemerita Univ Autonoma Puebla, Ciudad Univ, Facultad Ciencias Fisico Matemat, Puebla 72570, Mexico
[3] Univ Sonora, Departamento Matemat, Blvd Encinas Rosales s n, Hermosillo 83000, Sonora, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Mexico
来源
PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE | 2014年 / 49卷
关键词
Heliostat; Tracking errors; Solar tower power plants; Monte Carlo simulations; Gaussian distribution;
D O I
10.1016/j.egypro.2014.03.140
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Several error sources can contribute to the global tracking error of heliostats. These sources can be, for instance, angular offset in the reference position of the tracking mechanisms, imperfect leveling of the heliostat pedestal, lack of perpendicularity between the tracking axes, lack of precise clock synchronization. All these possible errors are characterized by angles that have very specific numerical values for each heliostat in a central receiver installation. However, they are intrinsically random in nature, and the errors in different heliostats are independent from each other. In principle, the overall drift behavior of the heliostats can be characterized by a statistical distribution of tracking errors. This global distribution characterizes the angular deviation of the heliostat normal and is used in ray tracing simulations of heliostat fields. It is usually assumed to be Gaussian, although some authors argue in favor of other types of distributions. In the present work, the dependence of the global tracking error distribution on the above mentioned primary error sources is investigated by means of Monte Carlo simulations. Random values are assumed for the different error parameters, and the resulting global tracking error distributions are evaluated for different times of the year for a heliostat field. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
引用
收藏
页码:1308 / 1317
页数:10
相关论文
共 12 条
[1]  
Arancibia-Bulnes C. A., 2011, P SOLARPACES 2011 C
[2]   Theoretical derivation of heliostat tracking errors distribution [J].
Badescu, Viorel .
SOLAR ENERGY, 2008, 82 (12) :1192-1197
[3]   A review of studies on central receiver solar thermal power plants [J].
Behar, Omar ;
Khellaf, Abdallah ;
Mohammedi, Kamal .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 23 :12-39
[4]  
Escobar-Toledo M, 2012, P SOLARPACES 2012 C
[5]   Codes for solar flux calculation dedicated to central receiver system applications: A comparative review [J].
Garcia, Pierre ;
Ferriere, Alain ;
Bezian, Jean-Jacques .
SOLAR ENERGY, 2008, 82 (03) :189-197
[6]   Accurate altitude-azimuth tracking angle formulas for a heliostat with mirror-pivot offset and other fixed geometrical errors [J].
Guo, Minghuan ;
Wang, Zhifeng ;
Zhang, Jianhan ;
Sun, Feihu ;
Zhang, Xiliang .
SOLAR ENERGY, 2011, 85 (05) :1091-1100
[7]  
Kistler B.L., 1986, A User's manual for DELSOL3: A computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants. Sandia National Labs
[8]   Heliostat field layout optimization for high-temperature solar thermochemical processing [J].
Pitz-Paal, Robert ;
Botero, Nicolas Bayer ;
Steinfeld, Aldo .
SOLAR ENERGY, 2011, 85 (02) :334-343
[9]  
Riveros D., 2009, P 2009 SOL PACES S B
[10]   Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower [J].
Roeb, M. ;
Saeck, J. -P. ;
Rietbrock, P. ;
Prahl, C. ;
Schreiber, H. ;
Neises, M. ;
de Oliveira, L. ;
Graf, D. ;
Ebert, M. ;
Reinalter, W. ;
Meyer-Gruenefeldt, M. ;
Sattler, C. ;
Lopez, A. ;
Vidal, A. ;
Elsberg, A. ;
Stobbe, P. ;
Jones, D. ;
Steele, A. ;
Lorentzou, S. ;
Pagkoura, C. ;
Zygogianni, A. ;
Agrafiotis, C. ;
Konstandopoulos, A. G. .
SOLAR ENERGY, 2011, 85 (04) :634-644