Simple compact quantum groups I

被引:23
作者
Wang, Shuzhou [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Simple quantum groups; Woronowicz C*-algebras; Deformation quantization; Noncommutative geometry; Hopf algebras; NONCOMMUTATIVE DIFFERENTIAL-CALCULUS; AUTOMORPHISM-GROUPS; MATRIX PSEUDOGROUPS; ENVELOPING-ALGEBRAS; QUOTIENT-SPACES; KREIN DUALITY; SU(2) GROUP; GRAPHS; DEFORMATIONS; SYMMETRIES;
D O I
10.1016/j.jfa.2008.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of simple compact quantum group is introduced. As non-trivial (noncommutative and noncocommutative) examples, the following families of compact quantum groups are shown to be simple: (a) The universal quantum groups B(u) (Q) for Q is an element of GL(n,C) satisfying Q (Q) over bar = +/- l(n), n >= 2; (b) The quantum automorphism groups A(aut)(B, tau) of finite-dimensional C*-algebras B endowed with the canonical trace tau when dim(B) >= 4, including the quantum permutation groups A(aut)(X(n)) on n points (n >= 4); (c) The standard deformations K(q) of simple compact Lie groups K and their twists K(q)(u), as well as Rieffel's deformation K(J). (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3313 / 3341
页数:29
相关论文
共 47 条
[1]  
Andruskiewitsch N., 1996, ST PETERSB MATH J, V7, P17
[2]  
[Anonymous], 1987, PROC ICM
[3]   Compact Kac algebras and commuting squares [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (01) :80-99
[4]   Symmetries of a generic coaction [J].
Banica, T .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :763-780
[5]   Quantum automorphism groups of homogeneous graphs [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :243-280
[6]   Quantum automorphism groups of small metric spaces [J].
Banica, T .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 219 (01) :27-51
[7]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[8]   Quantum groups and Fuss-Catalan algebras [J].
Banica, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (01) :221-232
[9]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[10]  
BANICA T, 1999, EXPOSITION MATH, V17, P313