Modulation of Fluid Temperature Fluctuations by Inertial Particles in Turbulence

被引:0
作者
Carbone, Maurizio [1 ]
Bragg, Andrew D. [2 ]
Iovieno, Michele [1 ]
机构
[1] Politecn Torino, Dipartimento Ingn Meccan & Aerosp, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
来源
PROGRESS IN TURBULENCE VIII | 2019年 / 226卷
关键词
DIRECT NUMERICAL-SIMULATION; PASSIVE SCALAR;
D O I
10.1007/978-3-030-22196-6_39
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the effect of the thermal two-way coupling between the fluid temperature field and point-like particles on the temperature statistics in homogeneous and isotropic steady turbulence by means of direct numerical simulations (DNS). Results show that, on average, particles dissipate the variance of the temperature fluctuations modulating the fluid temperature gradients. The temperature gradient normalized Probability Density Functions (PDF) collapse to a single curve for all Stokes and thermal Stokes numbers. On the other hand, the normalized PDF of the fluid temperature-particle temperature increments, which cause the thermal dissipation, shows a strong dependence on the thermal Stokes number. Inertial particles preferentially cluster in the region of sharp fluid temperature variation and easily cross these thin temperature gradient sheets causing large heat fluxes. The impact of the particle thermal feedback across the scales of the flow is examined through the fluid temperature and particle temperature Eulerian structure functions.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 14 条
[1]   Clustering, Fronts, and Heat Transfer in Turbulent Suspensions of Heavy Particles [J].
Bec, Jeremie ;
Homann, Holger ;
Krstulovic, Giorgio .
PHYSICAL REVIEW LETTERS, 2014, 112 (23)
[2]   On the relationship between the non-local clustering mechanism and preferential concentration [J].
Bragg, Andrew D. ;
Ireland, Peter J. ;
Collins, Lance R. .
JOURNAL OF FLUID MECHANICS, 2015, 780 :327-343
[3]  
Canuto C, 2007, Spectral Methods in Fluid Dynamics. Scientific Computation
[4]  
Carbone M., 2018, WIT T ENG SCI, V120, P237, DOI [10.2495/AFM180241, DOI 10.2495/AFM180241]
[5]   Universality and saturation of intermittency in passive scalar turbulence [J].
Celani, A ;
Lanotte, A ;
Mazzino, A ;
Vergassola, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2385-2388
[6]   Turbulent Fluid Acceleration Generates Clusters of Gyrotactic Microorganisms [J].
De Lillo, Filippo ;
Cencini, Massimo ;
Durham, William M. ;
Barry, Michael ;
Stocker, Roman ;
Climent, Eric ;
Boffetta, Guido .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[7]   PARTICLE-LADEN TURBULENT FLOWS - DIRECT SIMULATION AND CLOSURE MODELS [J].
ELGHOBASHI, S .
APPLIED SCIENTIFIC RESEARCH, 1991, 48 (3-4) :301-314
[8]  
Grabowski WW, 2013, ANNU REV FLUID MECH, V45, P293, DOI [10.1146/annurev-fluid-011212-148750, 10.1146/annurev-fluid-011212-140750]
[9]  
Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
[10]   EQUATION OF MOTION FOR A SMALL RIGID SPHERE IN A NONUNIFORM FLOW [J].
MAXEY, MR ;
RILEY, JJ .
PHYSICS OF FLUIDS, 1983, 26 (04) :883-889