Using connectome-based predictive modeling to predict individual behavior from brain connectivity

被引:666
作者
Shen, Xilin [1 ]
Finn, Emily S. [2 ]
Scheinost, Dustin [1 ]
Rosenberg, Monica D. [3 ]
Chun, Marvin M. [2 ,3 ,4 ]
Papademetris, Xenophon [1 ,5 ]
Constable, R. Todd [1 ,2 ,6 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT 06510 USA
[2] Yale Sch Med, Interdept Neurosci Program, New Haven, CT 06510 USA
[3] Yale Univ, Dept Psychol, New Haven, CT USA
[4] Yale Sch Med, Dept Neurosci, New Haven, CT USA
[5] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[6] Yale Sch Med, Dept Neurosurg, New Haven, CT 06510 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
RESTING-STATE FMRI; FUNCTIONAL CONNECTIVITY; CLASSIFICATION; ORGANIZATION; MOTION;
D O I
10.1038/nprot.2016.178
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
N euroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEEEG). Technical advances and large-scale data sets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPCPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: (i) feature selection, (ii) feature summarization, (iii) model building, and (iv) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i. e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a considerable amount of the variance in these measures. It has been demonstrated that the CPCPM protocol performs as well as or better than many of the existing approaches in brain-behavior prediction. As CPCPM focuses on linear modeling and a purely data-driven approach, neuroscientists with limited or no experience in machine learning or optimization will find it easy to implement these protocols. Depending on the volume of data to be processed, the protocol can take 10-100 min for model building, 1-48 h for permutation testing, and 10-20 min for visualization of results.
引用
收藏
页码:506 / 518
页数:13
相关论文
共 40 条
  • [1] The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
    Acuna, Carlos
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
  • [2] Functional connectivity magnetic resonance imaging classification of autism
    Anderson, Jeffrey S.
    Nielsen, Jared A.
    Froehlich, Alyson L.
    DuBray, Molly B.
    Druzgal, T. Jason
    Cariello, Annahir N.
    Cooperrider, Jason R.
    Zielinski, Brandon A.
    Ravichandran, Caitlin
    Fletcher, P. Thomas
    Alexander, Andrew L.
    Bigler, Erin D.
    Lange, Nicholas
    Lainhart, Janet E.
    [J]. BRAIN, 2011, 134 : 3739 - 3751
  • [3] [Anonymous], 2020, Nonparametric Statistical Inference, DOI DOI 10.1201/9781439896129
  • [4] Classification of schizophrenia patients based on resting-state functional network connectivity
    Arbabshirani, Mohammad R.
    Kiehl, Kent A.
    Pearlson, Godfrey D.
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [5] ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
    Brown, Matthew R. G.
    Sidhu, Gagan S.
    Greiner, Russell
    Asgarian, Nasimeh
    Bastani, Meysam
    Silverstone, Peter H.
    Greenshaw, Andrew J.
    Dursun, Serdar M.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6 : 1 - 22
  • [6] A whole brain fMRI atlas generated via spatially constrained spectral clustering
    Craddock, R. Cameron
    James, G. Andrew
    Holtzheimer, Paul E., III
    Hu, Xiaoping P.
    Mayberg, Helen S.
    [J]. HUMAN BRAIN MAPPING, 2012, 33 (08) : 1914 - 1928
  • [7] Predicting Treatment Response in Social Anxiety Disorder From Functional Magnetic Resonance Imaging
    Doehrmann, Oliver
    Ghosh, Satrajit S.
    Polli, Frida E.
    Reynolds, Gretchen O.
    Horn, Franziska
    Keshavan, Anisha
    Triantafyllou, Christina
    Saygin, Zeynep M.
    Whitfield-Gabrieli, Susan
    Hofmann, Stefan G.
    Pollack, Mark
    Gabrieli, John D.
    [J]. JAMA PSYCHIATRY, 2013, 70 (01) : 87 - 97
  • [8] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361
  • [9] Drucker H, 1997, ADV NEUR IN, V9, P155
  • [10] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Finn, Emily S.
    Shen, Xilin
    Scheinost, Dustin
    Rosenberg, Monica D.
    Huang, Jessica
    Chun, Marvin M.
    Papademetris, Xenophon
    Constable, R. Todd
    [J]. NATURE NEUROSCIENCE, 2015, 18 (11) : 1664 - 1671