LOG-SOBOLEV INEQUALITIES: DIFFERENT ROLES OF RIC AND HESS

被引:11
作者
Wang, Feng-Yu [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math, Beijing 100875, Peoples R China
[2] Swansea Univ, Swansea SA2 8PP, W Glam, Wales
基金
中国国家自然科学基金;
关键词
Log-Sobolev inequality; Ricci curvature; Riemannian manifold; diffusion semigroup; RIEMANNIAN-MANIFOLDS; HEAT KERNEL; ULTRACONTRACTIVITY; SEMIGROUPS; PROPERTY;
D O I
10.1214/08-AOP444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let P(t) be the diffusion semigroup generated by L := Delta + del V on a complete connected Riemannian manifold with Ric >= -(sigma(2)rho(2)(0) + c) for some constants sigma, c > 0 and rho(0) the Riemannian distance to a fixed point. It is shown that Pt is hypercontractive, or the log-Sobolev inequality holds for the associated Dirichlet form, provided - Hess(V) >= delta holds outside of a compact set for some constant delta > (1 +root 2)sigma root d-1. This indicates, at least in finite dimensions, that Ric and - HessV play quite different roles for the log-Sobolev inequality to hold. The supercontractivity and the ultracontractivity are also studied.
引用
收藏
页码:1587 / 1604
页数:18
相关论文
共 21 条
[1]   LOGARITHMIC SOBOLEV INEQUALITIES AND EXPONENTIAL INTEGRABILITY [J].
AIDA, S ;
MASUDA, T ;
SHIGEKAWA, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :83-101
[2]   Uniform positivity improving property, Sobolev inequalities, and spectral gaps [J].
Aida, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (01) :152-185
[3]  
[Anonymous], 1979, LECT NOTES MATH
[4]   Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below [J].
Arnaudon, M ;
Thalmaier, A ;
Wang, FY .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :223-233
[5]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[6]  
Bismut J.-M., 1984, PROGR MATH, V45
[7]   Elliptic equations for invariant measures on finite and infinite dimensional manifolds [J].
Bogachev, VI ;
Röckner, M ;
Wang, FY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (02) :177-221
[8]   Estimates of logarithmic Sobolev constant: An improvement of Bakry-Emery criterion [J].
Chen, MF ;
Wang, FY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (02) :287-300
[9]  
CHEN MF, 1994, SCI CHINA SER A, V37, P1
[10]   GRADIENT ESTIMATES ON MANIFOLDS USING COUPLING [J].
CRANSTON, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :110-124