Preparation of V doped lanthanum silicate electrolyte ceramics by combustion method and study on conductance mechanism

被引:5
作者
Chen, Shi [1 ]
Huang, Zhi Liang [1 ]
Chen, Chang Lian [1 ]
Lu, Mian [1 ]
Wu, Chang Sheng [1 ]
Jiang, Yuan [1 ]
机构
[1] Wuhan Inst Technol, Sch Mat Sci & Engn, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
combustion synthesis; doping enhancement conductivity mechanism; lanthanum silicate; solid electrolyte ceramics; vanadium doping; ELECTRICAL-PROPERTIES; APATITE; TRANSPORT;
D O I
10.1111/ijac.13666
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vanadium doped La 9.33 (x = 0.5, 1.0, 1.5) (LSVO) electrolyte powder was prepared by combustion method at 600 degrees C for 5-7 min. The powder was sintered at 1500 degrees C for 3 hours to prepare LSVO ceramics. XPS, IR, XRD, and EIS analysis show that V5+ doping replaces Si4+ in [SiO4] to form [Si(V)O-4] tetrahedron. With the increase in x, the lattice volume increase. When x = 2.0, the LaVO4 phase was formed, indicating that the limit doping amount of V5+ replacing Si4+ is x <= 1.5. The conductivity of LSVO increases significantly with the increase in x (x <= 1.0), which attributed to the xV5+27f6;xSi4+xVSi center dot+1/2xOi*// defect reaction caused by V5+ doping. The addition of the interstitial oxygen Oi* in 6(3) channels and the increase of lattice volume leads to increased conductivity. When x = 1.0, the highest conductivity is 1.46 x 10(-2) S center dot cm(-1) (800 degrees C). The doping enhancement conductivity mechanism is the Interstitial oxygen defect-Lattice volume composite enhancement mechanism.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 23 条
[1]  
Absah Hidayatul Qayyimah Hj Hairul, 2017, Materials Science Forum, V889, P173, DOI 10.4028/www.scientific.net/MSF.889.173
[2]   Electrical properties of lanthanum containing vanadocalcic oxyapatite [J].
Benmoussa, H ;
Mikou, M ;
Bensaoud, A ;
Bouhaouss, A ;
Morineaux, R .
MATERIALS RESEARCH BULLETIN, 2000, 35 (03) :369-375
[3]  
Cao JL., 2019, CERAM INT, V46, P5420
[4]   Oxygen reduction reaction at (La,Sr) (Co,Fe)O3-δ electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells [J].
Cao, Xiao Guo ;
Jiang, San Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) :1203-1212
[5]   Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping [J].
Ding, Xifeng ;
Hua, Guixiang ;
Ding, Dong ;
Zhu, Wenliang ;
Wang, Hongjin .
JOURNAL OF POWER SOURCES, 2016, 306 :630-635
[6]   Anisotropy of oxide-ion conduction in apatite-type lanthanum silicate [J].
Fukuda, Koichiro ;
Asaka, Toru ;
Okino, Masahiro ;
Berghout, Abid ;
Bechade, Emilie ;
Masson, Olivier ;
Julien, Isabelle ;
Thomas, Philippe .
SOLID STATE IONICS, 2012, 217 :40-45
[7]   Oxygen conduction mechanism in Ca3Fe2Ge3O12 garnet-type oxide [J].
Lee, Joohwi ;
Ohba, Nobuko ;
Asahi, Ryoji .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Synthesis and electrical properties of apatite-type La10Si6O27 [J].
Li, Bin ;
Liu, Wei ;
Pan, Wei .
JOURNAL OF POWER SOURCES, 2010, 195 (08) :2196-2201
[9]   Position preference and diffusion path of an oxygen ion in apatite-type lanthanum silicate La9.33Si6O26: a density functional study [J].
Liao, Ting ;
Sasaki, Taizo ;
Suehara, Shigeru ;
Sun, Ziqi .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) :3234-3242
[10]   Synthesis of apatite type La10-xSrxSi6O27-0.5x powders for IT-SOFC using sol-gel process [J].
Ma, Y. ;
Fenineche, N. ;
Elkedim, O. ;
Moliere, M. ;
Liao, H. ;
Briois, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (23) :9993-10000