An Efficient Representation-Based Subspace Clustering Framework for Polarized Hyperspectral Images

被引:4
作者
Chen, Zhengyi [1 ,2 ,3 ]
Zhang, Chunmin [1 ,2 ,3 ]
Mu, Tingkui [1 ,2 ,3 ]
Yan, Tingyu [1 ,2 ,3 ]
Chen, Zeyu [1 ,2 ,3 ]
Wang, Yanqiang [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Inst Space Opt, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Minist Educ, Key Lab Nonequilibrium Synth & Modulat Condensed, Xian 710049, Shaanxi, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
hyperspectral images; polarization; subspace clustering; sparse representation; CLASSIFICATION; ALGORITHM;
D O I
10.3390/rs11131513
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, representation-based subspace clustering algorithms for hyperspectral images (HSIs) have been developed with the assumption that pixels belonging to the same land-cover class lie in the same subspace. Polarization is regarded to be a complement to spectral information, but related research only focus on the clustering for HSIs without considering polarization, and cannot effectively process large-scale hyperspectral datasets. In this paper, we propose an efficient representation-based subspace clustering framework for polarized hyperspectral images (PHSIs). Combining with spectral information and polarized information, this framework is extensible for most existing representation-based subspace clustering algorithms. In addition, with a sampling-clustering-classification strategy which firstly clusters selected in-sample data into several classes and then matches the out-of-sample data into these classes by collaborative representation-based classification, the proposed framework significantly reduces the computational complexity of clustering algorithms for PHSIs. Some experiments were carried out to demonstrate the accuracy, efficiency and potential capabilities of the algorithms under the proposed framework.
引用
收藏
页数:16
相关论文
共 50 条
[11]   Diffusion Subspace Clustering for Hyperspectral Images [J].
Chen, Jiaxin ;
Liu, Shujun ;
Zhang, Zhongbiao ;
Wang, Huajun .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :6517-6530
[12]   Tensorial Multiview Subspace Clustering for Polarimetric Hyperspectral Images [J].
Chen, Zhengyi ;
Zhang, Chunmin ;
Mu, Tingkui ;
He, Yifan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[13]   Superpixel Contracted Neighborhood Contrastive Subspace Clustering Network for Hyperspectral Images [J].
Cai, Yaoming ;
Zhang, Zijia ;
Ghamisi, Pedram ;
Ding, Yao ;
Liu, Xiaobo ;
Cai, Zhihua ;
Gloaguen, Richard .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[14]   Hybrid-Hypergraph Regularized Multiview Subspace Clustering for Hyperspectral Images [J].
Huang, Shaoguang ;
Zhang, Hongyan ;
Pizurica, Aleksandra .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[15]   Random Collective Representation-Based Detector with Multiple Features for Hyperspectral Images [J].
Li, Zhongheng ;
He, Fang ;
Hu, Haojie ;
Wang, Fei ;
Yu, Weizhong .
REMOTE SENSING, 2021, 13 (04) :1-22
[16]   Collaborative representation-based semisupervised feature extraction of hyperspectral images using attraction points [J].
Li, Fanduo ;
Lv, Meng ;
Jing, Ling .
JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02)
[17]   JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES [J].
Huang, Shaoguang ;
Zhang, Hongyan ;
Pizurica, Aleksandra .
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, :3878-3882
[18]   Contrastive Multiview Subspace Clustering of Hyperspectral Images Based on Graph Convolutional Networks [J].
Guan, Renxiang ;
Li, Zihao ;
Tu, Wenxuan ;
Wang, Jun ;
Liu, Yue ;
Li, Xianju ;
Tang, Chang ;
Feng, Ruyi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[19]   Efficient Probabilistic Collaborative Representation-Based Classifier for Hyperspectral Image Classification [J].
Xu, Yan ;
Du, Qian ;
Li, Wei ;
Younan, Nicolas H. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) :1746-1750
[20]   Efficient subspace clustering based on self-representation and grouping effect [J].
Zhang, Shichao ;
Li, Yonggang ;
Cheng, Debo ;
Deng, Zhenyun ;
Yang, Lifeng .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (01) :51-59