Deep-Learning-Based Channel Estimation for IRS-Assisted ISAC System

被引:12
作者
Liu, Yu [1 ]
Al-Nahhal, Ibrahim [2 ]
Dobre, Octavia A. [2 ]
Wang, Fanggang [1 ]
机构
[1] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X9, Canada
来源
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022) | 2022年
关键词
Integrated sensing and communication (ISAC); intelligent reflecting surface (IRS); channel estimation; deeplearning (DL); JOINT RADAR; DESIGN;
D O I
10.1109/GLOBECOM48099.2022.10001672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Integrated sensing and communication (ISAC) and intelligent reflecting surface (IRS) are viewed as promising technologies for future generations of wireless networks. This paper investigates the channel estimation problem in an IRS-assisted ISAC system. A deep-learning framework is proposed to estimate the sensing and communication (S&C) channels in such a system. Considering different propagation environments of the S&C channels, two deep neural network (DNN) architectures are designed to realize this framework. The first DNN is devised at the ISAC base station for estimating the sensing channel, while the second DNN architecture is assigned to each downlink user equipment to estimate its communication channel. Moreover, the input-output pairs to train the DNNs are carefully designed. Simulation results show the superiority of the proposed estimation approach compared to the benchmark scheme under various signal-to-noise ratio conditions and system parameters.
引用
收藏
页码:4220 / 4225
页数:6
相关论文
共 22 条
[1]   Reconfigurable Intelligent Surface Optimization for Uplink Sparse Code Multiple Access [J].
Al-Nahhal, Ibrahim ;
Dobre, Octavia A. ;
Basar, Ertugrul ;
Ngatched, Telex M. N. ;
Ikki, Salama .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) :133-137
[2]   Reconfigurable Intelligent Surface-Assisted Uplink Sparse Code Multiple Access [J].
Al-Nahhal, Ibrahim ;
Dobre, Octavia A. ;
Basar, Ertugrul .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) :2058-2062
[3]   Performance Tradeoff in a Unified Passive Radar and Communications System [J].
Chalise, Batu K. ;
Amin, Moeness G. ;
Himed, Braham .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (09) :1275-1279
[4]   Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems [J].
Elbir, Ahmet M. ;
Papazafeiropoulos, Anastasios ;
Kourtessis, Pandelis ;
Chatzinotas, Symeon .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) :1447-1451
[5]   Deep Reinforcement Learning for Optimizing RIS-Assisted HD-FD Wireless Systems [J].
Faisal, Alice ;
Al-Nahhal, Ibrahim ;
Dobre, Octavia A. ;
Ngatched, Telex M. N. .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) :3893-3897
[6]   Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO [J].
He, Zhen-Qing ;
Yuan, Xiaojun .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :210-214
[7]   Learning to Reflect and to Beamform for Intelligent Reflecting Surface With Implicit Channel Estimation [J].
Jiang, Tao ;
Cheng, Hei Victor ;
Yu, Wei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) :1931-1945
[8]   Intelligent Reflecting Surface Aided Dual-Function Radar and Communication System [J].
Jiang, Zheng-Ming ;
Rihan, Mohamed ;
Zhang, Peichang ;
Huang, Lei ;
Deng, Qijun ;
Zhang, Jihong ;
Mohamed, Ehab Mahmoud .
IEEE SYSTEMS JOURNAL, 2022, 16 (01) :475-486
[9]   A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects [J].
Li, Zewen ;
Liu, Fan ;
Yang, Wenjie ;
Peng, Shouheng ;
Zhou, Jun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) :6999-7019
[10]   Deep Residual Learning for Channel Estimation in Intelligent Reflecting Surface-Assisted Multi-User Communications [J].
Liu, Chang ;
Liu, Xuemeng ;
Ng, Derrick Wing Kwan ;
Yuan, Jinhong .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) :898-912