Differential Galois Theory and Isomonodromic Deformations

被引:1
作者
Blazquez Sanz, David [1 ]
Casale, Guy [2 ]
Diaz Arboleda, Juan Sebastian [1 ]
机构
[1] Univ Nacl Colombia, Sede Medellin, Fac Ciencias, Escuela Matemat, Calle 59A 63-20, Medellin, Antioquia, Colombia
[2] Univ Rennes 1, IRMAR, Campus Beaulieu,Bat 22-23,263 Ave Gen Leclerc, F-35042 Rennes, France
关键词
differential Galois theory; isomonodromic deformations; hypergeometric equation; PICARD-VESSIOT EXTENSIONS; ALGEBRAIC-GROUPS; EQUATIONS;
D O I
10.3842/SIGMA.2019.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a geometric setting for the differential Galois theory of G-invariant connections with parameters. As an application of some classical results on differential algebraic groups and Lie algebra bundles, we see that the Galois group of a connection with parameters with simple structural group G is determined by its isomonodromic deformations. This allows us to compute the Galois groups with parameters of the general Fuchsian special linear system and of Gauss hypergeometric equation.
引用
收藏
页数:35
相关论文
共 27 条
[21]  
MALGRANGE B., 2001, Enseign. Math., V38, P465
[22]  
Malgrange B., 2010, IHESM1011
[23]   Reductive Linear Differential Algebraic Groups and the Galois Groups of Parameterized Linear Differential Equations [J].
Minchenko, Andrey ;
Ovchinnikov, Alexey ;
Singer, Michael F. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (07) :1733-1793
[24]   UNIPOTENT DIFFERENTIAL ALGEBRAIC GROUPS AS PARAMETERIZED DIFFERENTIAL GALOIS GROUPS [J].
Minchenko, Andrey ;
Ovchinnikov, Alexey ;
Singer, Michael F. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (04) :671-700
[25]   Algebraic D-groups and differential Galois theory [J].
Pillay, A .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :343-360
[26]   On parameterized differential Galois extensions [J].
Sanchez, Omar Leon ;
Nagloo, Joel .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (07) :2549-2563
[27]   Existence of partial derivative-parameterized Picard-Vessiot extensions over fields with algebraically closed constants [J].
Wibmer, Michael .
JOURNAL OF ALGEBRA, 2012, 361 :163-171