Differential Galois Theory and Isomonodromic Deformations

被引:1
作者
Blazquez Sanz, David [1 ]
Casale, Guy [2 ]
Diaz Arboleda, Juan Sebastian [1 ]
机构
[1] Univ Nacl Colombia, Sede Medellin, Fac Ciencias, Escuela Matemat, Calle 59A 63-20, Medellin, Antioquia, Colombia
[2] Univ Rennes 1, IRMAR, Campus Beaulieu,Bat 22-23,263 Ave Gen Leclerc, F-35042 Rennes, France
关键词
differential Galois theory; isomonodromic deformations; hypergeometric equation; PICARD-VESSIOT EXTENSIONS; ALGEBRAIC-GROUPS; EQUATIONS;
D O I
10.3842/SIGMA.2019.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a geometric setting for the differential Galois theory of G-invariant connections with parameters. As an application of some classical results on differential algebraic groups and Lie algebra bundles, we see that the Galois group of a connection with parameters with simple structural group G is determined by its isomonodromic deformations. This allows us to compute the Galois groups with parameters of the general Fuchsian special linear system and of Gauss hypergeometric equation.
引用
收藏
页数:35
相关论文
共 27 条
[1]  
[Anonymous], 1973, PURE APPL MATH
[2]   On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters [J].
Arreche, Carlos E. .
JOURNAL OF SYMBOLIC COMPUTATION, 2016, 75 :25-55
[3]   Parallelisms & Lie Connections [J].
Blazquez-Sanz, David ;
Casale, Guy .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
[4]  
Cartier P, 2009, ASTERISQUE, P165
[5]  
Cassidy PJ, 2007, IRMA L MATH THE PHYS, V9, P113
[7]  
Davy D., 2016, THESIS, V1
[8]  
Demazure Michel A., 1970, Lecture Notes in Mathematics, V151
[9]   A DENSITY THEOREM IN PARAMETRIZED DIFFERENTIAL GALOIS THEORY [J].
Dreyfus, Thomas .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (01) :87-141
[10]   Parameterized Picard-Vessiot extensions and Atiyah extensions [J].
Gillet, Henri ;
Gorchinskiy, Sergey ;
Ovchinnikov, Alexey .
ADVANCES IN MATHEMATICS, 2013, 238 :322-411