Predictive model and risk engine web application for surgical site infection risk in perioperative patients with type 2 diabetes

被引:4
作者
Koshizaka, Masaya [1 ,2 ]
Ishibashi, Ryoichi [2 ,3 ]
Maeda, Yukari [1 ,2 ]
Ishikawa, Takahiro [1 ,2 ]
Maezawa, Yoshiro [1 ,2 ]
Takemoto, Minoru [2 ,4 ]
Yokote, Koutaro [1 ,2 ]
机构
[1] Chiba Univ Hosp, Div Diabet Metab & Endocrinol, Dept Med, Chiba, Japan
[2] Chiba Univ, Div Diabet Metab & Endocrinol, Dept Endocrinol Hematol & Gerontol, Chiba Univ Hosp,Grad Sch Med,Chu Ku, 1-8-1 Inohana, Chiba 2608670, Japan
[3] Kimitsu Chuo Hosp, Div Diabet Endocrinol & Metab, Dept Med, Kisarazu, Chiba, Japan
[4] Int Univ Hlth & Welf, Div Diabet Metab & Endocrinol, Dept Med, Chiba, Japan
关键词
Predictive model; Risk engine web application; Surgical site infection; Type; 2; diabetes; GLUCOSE CONTROL; HYPERGLYCEMIA; SURVEILLANCE; HYPOGLYCEMIA;
D O I
10.1007/s13340-022-00587-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim To identify predictive factors for surgical site infection (SSI) in patients with type 2 diabetes and develop a prediction tool. Materials and methods We retrospectively analyzed the perioperative blood glucose management of 105 patients with type 2 diabetes treated from 2016 to 2018 at Chiba University Hospital. The primary outcome was SSI onset within 30 postoperative days; moreover, predictive factors were identified using univariate analysis. Principal component analysis and logistic regression analysis were performed to prepare SSI predictive model using the identified predictive factors. The area under the receiver operating characteristic curve (AUC) was evaluated. Based on the predictive model, we developed a risk engine for SSI prediction. Results Compared with patients without SSI (n = 70), those with SSI (n= 35) had significantly higher fasting blood glucose levels at referral (169.1 +/- 61.8 mg/dL vs. 140.1 +/- 56.6, P = 0.036), preoperative mean blood glucose levels (178.3 +/- 48.4 mg/ dL vs. 155.2 +/- 39.7, P = 0.009), preoperative maximum blood glucose levels (280.4 +/- 87.3 mg/dL vs. 230.3 +/- 92.4, P = 0.009), preoperative blood glucose fluctuations (54.9 +/- 24.1 mg/dL vs. 37.7 +/- 23.1, P = 0.001), percentage of hospitalization at referral (54.3% vs. 20.0, P < 0.001); longer operation time (432.5 +/- 179.6 min vs. 282.5 +/- 178.3, P < 0.001); and greater bleeding volume (972.3 +/- 920.1 mg/dL vs. 436.4 +/- 795.8, P < 0.001). Logistic regression analysis revealed preoperative blood glucose fluctuation and operation time as the most reliable predictive factors. The predictive model had high prediction accuracy (AUC of 0.801). The risk engine prototype for SSI prediction can be accessed at https://www.dm-ope-riskengine.org/. Conclusions The predictive model developed in this study could screen high-risk patients. It may be useful to prevent SSI in such patients.
引用
收藏
页码:657 / 664
页数:8
相关论文
共 21 条
[1]  
Amer Diabet Assoc, 2013, DIABETES CARE, V36, pS67, DOI [10.2337/dc12-s064, 10.2337/dc10-S011, 10.2337/dc13-S067, 10.2337/dc11-S011, 10.2337/dc12-s011, 10.2337/dc11-S062, 10.2337/dc14-S081, 10.2337/dc10-S062, 10.2337/dc13-S011]
[2]   Prolonged Operative Duration Increases Risk of Surgical Site Infections: A Systematic Review [J].
Cheng, Hang ;
Chen, Brian Po-Han ;
Soleas, Ireena M. ;
Ferko, Nicole C. ;
Cameron, Chris G. ;
Hinoul, Piet .
SURGICAL INFECTIONS, 2017, 18 (06) :722-735
[3]   Intensive versus Conventional Glucose Control in Critically Ill Patients [J].
Finfer, S. ;
Blair, D. ;
Bellomo, R. ;
McArthur, C. ;
Mitchell, I. ;
Myburgh, J. ;
Norton, R. ;
Potter, J. ;
Chittock, D. ;
Dhingra, V. ;
Foster, D. ;
Cook, D. ;
Dodek, P. ;
Hebert, P. ;
Henderson, W. ;
Heyland, D. ;
McDonald, E. ;
Ronco, J. ;
Schweitzer, L. ;
Peto, R. ;
Sandercock, P. ;
Sprung, C. ;
Young, J. D. ;
Su, S. ;
Heritier, S. ;
Li, Q. ;
Bompoint, S. ;
Billot, L. ;
Crampton, L. ;
Darcy, F. ;
Jayne, K. ;
Kumarasinghe, V. ;
Little, L. ;
McEvoy, S. ;
MacMahon, S. ;
Pandey, S. ;
Ryan, S. ;
Shukla, R. ;
Vijayan, B. ;
Atherton, S. ;
Bell, J. ;
Hadfield, L. ;
Hourigan, C. ;
McArthur, C. ;
Newby, L. ;
Simmonds, C. ;
Buhr, H. ;
Eccleston, M. ;
McGuinness, S. ;
Parke, R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (13) :1283-1297
[4]   The association of preoperative haemoglobin A1c with 30-day postoperative surgical site infection following non-cardiac surgery [J].
Gabriel, Rodney A. ;
Hylton, Diana J. ;
Burton, Brittany N. ;
Schmidt, Ulrich H. ;
Waterman, Ruth S. .
JOURNAL OF PERIOPERATIVE PRACTICE, 2020, 30 (10) :320-325
[5]   Predictive factors for surgical site infection in general surgery [J].
Haridas, Manjunath ;
Malangoni, Mark A. .
SURGERY, 2008, 144 (04) :496-503
[6]   CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting [J].
Horan, Teresa C. ;
Andrus, Mary ;
Dudeck, Margaret A. .
AMERICAN JOURNAL OF INFECTION CONTROL, 2008, 36 (05) :309-332
[7]   The Effect of Short-Term Hyperglycemia on the Innate Immune System [J].
Jafar, Nagham ;
Edriss, Hawa ;
Nugent, Kenneth .
AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2016, 351 (02) :201-211
[8]   The Role of Pre-Operative and Post-Operative Glucose Control in Surgical-Site Infections and Mortality [J].
Jeon, Christie Y. ;
Furuya, E. Yoko ;
Berman, Mitchell F. ;
Larson, Elaine L. .
PLOS ONE, 2012, 7 (09)
[9]   The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients [J].
Latham, R ;
Lancaster, AD ;
Covington, JF ;
Pirolo, JS ;
Thomas, CS .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2001, 22 (10) :607-612
[10]   Preoperative Hypoglycemia and Hyperglycemia Are Related to Postoperative Infection Rates in Implant-Based Breast Reconstruction [J].
Law, Tsun Yee ;
Moeller, Ellie ;
Hubbard, Zachary S. ;
Rosas, Samuel ;
Andreoni, Anthony ;
Chim, Harvey W. .
JOURNAL OF SURGICAL RESEARCH, 2018, 232 :437-441