Integrative Analysis of the Metabolome and Transcriptome of Sorghum bicolor Reveals Dynamic Changes in Flavonoids Accumulation under Saline-Alkali Stress

被引:68
作者
Ma, Siqi [1 ]
Lv, Lin [1 ]
Meng, Chen [1 ]
Zhang, Chengsheng [1 ]
Li, Yiqiang [1 ]
机构
[1] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
sorghum; metabolome; transcriptome; flavonoid; saline-alkali stress; ANTHOCYANIN BIOSYNTHESIS; NEGATIVE REGULATION; TOLERANCE; DROUGHT; PROANTHOCYANIDIN; PIGMENTATION; REPRESSORS; PATHWAY; LEAVES; LIGHT;
D O I
10.1021/acs.jafc.0c06249
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
With the perpetuation of soil salinization, it is imperative to improve the salt and alkaline tolerance of crops. Sorghum bicolor, a C4 crop, is often grown in semiarid areas due to its high tolerance of various abiotic stresses. Whether to improve the resistance of the sorghum itself or that of other crops, it is necessary to understand the response of sorghum under saline-alkali stress. An integrative analysis of the metabolome and transcriptome of sorghum under normal conditions and treatments of moderate and severe saline-alkali stress was performed. Among the different accumulated metabolites (DAMs) and differentially expressed genes (DEGs), flavonoid-related DAMS and DEGs were clearly changed. The level of flavonoids was increased under saline-alkali stress, and the change in flavonoids was dynamic as to whether total flavonoids or most flavonoid components accumulated more under moderate saline-alkali stress compared to severe stress. Some flavonoid metabolites were significantly correlated with the expression of flavonoid biosynthesis genes. MYB transcription factors may also contribute to the regulation of flavonoids levels. These findings present the dynamic changes and possible molecular mechanisms of flavonoids under different saline-alkali stresses and provide a foundation for future research and crop improvement.
引用
收藏
页码:14781 / 14789
页数:9
相关论文
共 41 条
[1]   Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa [J].
Ahmed, Nasar Uddin ;
Park, Jong-In ;
Jung, Hee-Jeong ;
Hur, Yoonkang ;
Nou, Ill-Sup .
FUNCTIONAL & INTEGRATIVE GENOMICS, 2015, 15 (04) :383-394
[2]   A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots [J].
Albert, Nick W. ;
Davies, Kevin M. ;
Lewis, David H. ;
Zhang, Huaibi ;
Montefiori, Mirco ;
Brendolise, Cyril ;
Boase, Murray R. ;
Ngo, Hanh ;
Jameson, Paula E. ;
Schwinn, Kathy E. .
PLANT CELL, 2014, 26 (03) :962-980
[3]   Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning [J].
Albert, Nick W. ;
Lewis, David H. ;
Zhang, Huaibi ;
Schwinn, Kathy E. ;
Jameson, Paula E. ;
Davies, Kevin M. .
PLANT JOURNAL, 2011, 65 (05) :771-784
[4]   Photorespiration: players, partners and origin [J].
Bauwe, Hermann ;
Hagemann, Martin ;
Fernie, Alisdair R. .
TRENDS IN PLANT SCIENCE, 2010, 15 (06) :330-336
[5]   An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics [J].
Bieza, K ;
Lois, R .
PLANT PHYSIOLOGY, 2001, 126 (03) :1105-1115
[6]   The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine [J].
Cavallini, Erika ;
Tomas Matus, Jose ;
Finezzo, Laura ;
Zenoni, Sara ;
Loyola, Rodrigo ;
Guzzo, Flavia ;
Schlechter, Rudolf ;
Ageorges, Agnes ;
Arce-Johnson, Patricio ;
Tornielli, Giovanni Battista .
PLANT PHYSIOLOGY, 2015, 167 (04) :1448-U552
[7]   An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes [J].
Chagne, David ;
Kui Lin-Wang ;
Espley, Richard V. ;
Volz, Richard K. ;
How, Natalie M. ;
Rouse, Simon ;
Brendolise, Cyril ;
Carlisle, Charmaine M. ;
Kumar, Satish ;
De Silva, Nihal ;
Micheletti, Diego ;
McGhie, Tony ;
Crowhurst, Ross N. ;
Storey, Roy D. ;
Velasco, Riccardo ;
Hellens, Roger P. ;
Gardiner, Susan E. ;
Allan, Andrew C. .
PLANT PHYSIOLOGY, 2013, 161 (01) :225-239
[8]   TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data [J].
Chen, Chengjie ;
Chen, Hao ;
Zhang, Yi ;
Thomas, Hannah R. ;
Frank, Margaret H. ;
He, Yehua ;
Xia, Rui .
MOLECULAR PLANT, 2020, 13 (08) :1194-1202
[9]   Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors [J].
Chen, Linhuan ;
Hu, Bing ;
Qin, Yonghua ;
Hu, Guibing ;
Zhao, Jietang .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 136 :178-187
[10]   A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics [J].
Chen, Wei ;
Gong, Liang ;
Guo, Zilong ;
Wang, Wensheng ;
Zhang, Hongyan ;
Liu, Xianqing ;
Yu, Sibin ;
Xiong, Lizhong ;
Luo, Jie .
MOLECULAR PLANT, 2013, 6 (06) :1769-1780