Hopf algebras for ternary algebras

被引:10
作者
Goze, M. [1 ]
de Traubenberg, M. Rausch [2 ]
机构
[1] Univ Haute Alsace, Fac Sci & Tech, Lab MIA, F-68093 Mulhouse, France
[2] IN2P3, UdS, CNRS, IPHC DRS, F-67037 Strasbourg, France
关键词
FRACTIONAL SUPERSYMMETRY; LIE-ALGEBRAS;
D O I
10.1063/1.3152631
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a universal enveloping algebra associated with the ternary extension of Lie (super)algebras called Lie algebra of order three. A Poincare-Birkhoff-Witt theorem is proven is this context. It this then shown that this universal enveloping algebra can be endowed with a structure of Hopf algebra. The study of the dual of the universal enveloping algebra enables to define the parameters of the transformation of a Lie algebra of order of 3. It turns out that these variables are the variables which generate the three-exterior algebra. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3152631]
引用
收藏
页数:16
相关论文
共 32 条
  • [1] Fractional superLie algebras and groups
    Ahmedov, H
    Yildiz, A
    Ucan, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (33): : 6413 - 6423
  • [2] Modeling multiple M2-branes
    Bagger, Jonathan
    Lambert, Neil
    [J]. PHYSICAL REVIEW D, 2007, 75 (04):
  • [3] DYNAMICAL THEORY OF SUBCONSTITUENTS BASED ON TERNARY-ALGEBRAS
    BARS, I
    GUNAYDIN, M
    [J]. PHYSICAL REVIEW D, 1980, 22 (06): : 1403 - 1413
  • [4] CONSTRUCTION OF LIE-ALGEBRAS AND LIE SUPERALGEBRAS FROM TERNARY ALGEBRAS
    BARS, I
    GUNAYDIN, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (09) : 1977 - 1993
  • [5] Universal differential calculus on ternary algebras
    Bazunova, N
    Borowiec, A
    Kerner, R
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2004, 67 (03) : 195 - 206
  • [6] Kinematical superalgebras and Lie algebras of order 3
    Campoamor-Stursberg, R.
    de Traubenberg, M. Rausch
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [7] Chari V., 1995, GUIDE QUANTUM GROUPS
  • [8] ALL POSSIBLE SYMMETRIES OF S MATRIX
    COLEMAN, S
    MANDULA, J
    [J]. PHYSICAL REVIEW, 1967, 159 (05): : 1251 - &
  • [9] Cubic extentions of the Poincare algebra
    de Traubenberg, M. Rausch
    [J]. PHYSICS OF ATOMIC NUCLEI, 2008, 71 (06) : 1102 - 1108
  • [10] Ternary algebras and groups
    de Traubenberg, Michel Rausch
    [J]. 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128