Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders

被引:7
作者
Lukassen, Soeren [1 ,2 ]
Ten, Foo Wei [1 ,2 ]
Adam, Lukas [1 ,2 ]
Eils, Roland [1 ,2 ,3 ]
Conrad, Christian [1 ,2 ]
机构
[1] Charite Univ Med Berlin, Digital Hlth Ctr, Berlin, Germany
[2] Berlin Inst Hlth BIH, Berlin, Germany
[3] Univ Hosp Heidelberg, Hlth Data Sci Unit, Heidelberg, Germany
关键词
EXPRESSION; ENRICHMENT;
D O I
10.1038/s42256-020-00269-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information. Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets.
引用
收藏
页码:800 / 809
页数:19
相关论文
共 50 条
  • [31] scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization
    Qian, Yuqing
    Zou, Quan
    Zhao, Mengyuan
    Liu, Yi
    Guo, Fei
    Ding, Yijie
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (08)
  • [32] Identifying and removing the cellcycle effect from single-cell RNA-Sequencing data
    Barron, Martin
    Li, Jun
    SCIENTIFIC REPORTS, 2016, 6
  • [33] Predicting the impact of sequence motifs on gene regulation using single-cell data
    Hepkema, Jacob
    Lee, Nicholas Keone
    Stewart, Benjamin J.
    Ruangroengkulrith, Siwat
    Charoensawan, Varodom
    Clatworthy, Menna R.
    Hemberg, Martin
    GENOME BIOLOGY, 2023, 24 (01)
  • [34] Predicting T Cell Mitochondria Hijacking from Tumor Single-Cell RNA Sequencing Data with MitoR
    Jiang, Anna
    Lyu, Chengshang
    Zhao, Yue
    MATHEMATICS, 2025, 13 (04)
  • [35] Inferring gene regulatory networks from single-cell data: a mechanistic approach
    Herbach, Ulysse
    Bonnaffoux, Arnaud
    Espinasse, Thibault
    Gandrillon, Olivier
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [36] DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors
    McGinnis, Christopher S.
    Murrow, Lyndsay M.
    Gartner, Zev J.
    CELL SYSTEMS, 2019, 8 (04) : 329 - +
  • [37] Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets
    Erbe, Rossin
    Kessler, Michael D.
    Favorov, Alexander, V
    Easwaran, Hariharan
    Gaykalova, Daria A.
    Fertig, Elana J.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (12) : E68 - E68
  • [38] A comprehensive human embryo reference tool using single-cell RNA-sequencing data
    Zhao, Cheng
    Reyes, Alvaro Plaza
    Schell, John Paul
    Weltner, Jere
    Ortega, Nicolas M.
    Zheng, Yi
    Bjorklund, Asa K.
    Baque-vidal, Laura
    Sokka, Joonas
    Torokovic, Ras
    Cox, Brian
    Rossant, Janet
    Fu, Jianping
    Petropoulos, Sophie
    Lanner, Fredrik
    NATURE METHODS, 2025, 22 (01) : 193 - 206
  • [39] Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
    Xu, Junlin
    Xu, Jielin
    Meng, Yajie
    Lu, Changcheng
    Cai, Lijun
    Zeng, Xiangxiang
    Nussinov, Ruth
    Cheng, Feixiong
    CELL REPORTS METHODS, 2023, 3 (01):
  • [40] Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
    Tanevski, Jovan
    Thin Nguyen
    Truong, Buu
    Karaiskos, Nikos
    Ahsen, Mehmet Eren
    Zhang, Xinyu
    Chang Shu
    Ke Xu
    Liang, Xiaoyu
    Ying Hu
    Pham, Hoang V. V.
    Li Xiaomei
    Le, Thuc D.
    Tarca, Adi L.
    Bhatti, Gaurav
    Romero, Roberto
    Karathanasis, Nestoras
    Loher, Phillipe
    Yang Chen
    Ouyang, Zhengqing
    Mao, Disheng
    Zhang, Yuping
    Zand, Maryam
    Ruan, Jianhua
    Hafemeister, Christoph
    Peng Qiu
    Duc Tran
    Tin Nguyen
    Gabor, Attila
    Yu, Thomas
    Guinney, Justin
    Glaab, Enrico
    Krause, Roland
    Banda, Peter
    Stolovitzky, Gustavo
    Rajewsky, Nikolaus
    Saez-Rodriguez, Julio
    Meyer, Pablo
    LIFE SCIENCE ALLIANCE, 2020, 3 (11)