Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders

被引:7
作者
Lukassen, Soeren [1 ,2 ]
Ten, Foo Wei [1 ,2 ]
Adam, Lukas [1 ,2 ]
Eils, Roland [1 ,2 ,3 ]
Conrad, Christian [1 ,2 ]
机构
[1] Charite Univ Med Berlin, Digital Hlth Ctr, Berlin, Germany
[2] Berlin Inst Hlth BIH, Berlin, Germany
[3] Univ Hosp Heidelberg, Hlth Data Sci Unit, Heidelberg, Germany
关键词
EXPRESSION; ENRICHMENT;
D O I
10.1038/s42256-020-00269-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information. Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets.
引用
收藏
页码:800 / 809
页数:19
相关论文
共 50 条
  • [1] PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization
    Gibbs, Claudia Skok
    Mahmood, Omar
    Bonneau, Richard
    Cho, Kyunghyun
    GENOME BIOLOGY, 2024, 25 (01)
  • [2] Identifying Genetic Signatures from Single-Cell RNA Sequencing Data by Matrix Imputation and Reduced Set Gene Clustering
    Seth, Soumita
    Mallik, Saurav
    Islam, Atikul
    Bhadra, Tapas
    Roy, Arup
    Singh, Pawan Kumar
    Li, Aimin
    Zhao, Zhongming
    MATHEMATICS, 2023, 11 (20)
  • [3] A Bayesian factorization method to recover single-cell RNA sequencing data
    Wen, Zi-Hang
    Langsam, Jeremy L.
    Zhang, Lu
    Shen, Wenjun
    Zhou, Xin
    CELL REPORTS METHODS, 2022, 2 (01):
  • [4] Joint inference of clonal structure using single-cell genome and transcriptome sequencing data
    Bai, Xiangqi
    Duren, Zhana
    Wan, Lin
    Xia, Li C.
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (01)
  • [5] Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures
    Chan, Thalia E.
    Stumpf, Michael P. H.
    Babtie, Ann C.
    CELL SYSTEMS, 2017, 5 (03) : 251 - +
  • [6] Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data
    Tran, Thinh N.
    Bader, Gary D.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [7] Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
    Yang, Yongjian
    Li, Guanxun
    Zhong, Yan
    Xu, Qian
    Chen, Bo-Jia
    Lin, Yu-Te
    Chapkin, Robert S.
    Cai, James J.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (13) : 6578 - 6592
  • [8] Gene trajectory inference for single-cell data by optimal transport metrics
    Qu, Rihao
    Cheng, Xiuyuan
    Sefik, Esen
    Stanley, Jay S.
    Landa, Boris
    Strino, Francesco
    Platt, Sarah
    Garritano, James
    Odell, Ian D.
    Coifman, Ronald
    Flavell, Richard A.
    Myung, Peggy
    Kluger, Yuval
    NATURE BIOTECHNOLOGY, 2025, 43 (02) : 258 - 268
  • [9] Recovering Gene Interactions from Single-Cell Data Using Data Diffusion
    van Dijk, David
    Sharma, Roshan
    Nainys, Juozas
    Yim, Kristina
    Kathail, Pooja
    Carr, Ambrose J.
    Burdziak, Cassandra
    Moon, Kevin R.
    Chaffer, Christine L.
    Pattabiraman, Diwakar
    Bierie, Brian
    Mazutis, Linas
    Wolf, Guy
    Krishnaswamy, Smita
    Pe'er, Dana
    CELL, 2018, 174 (03) : 716 - +
  • [10] Type 2 Diabetes Gene Identification Using an Integrated Approach from Single-Cell RNA Sequencing Data
    Paul, Sushmita
    Bansal, Sonu
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2152 - 2158