On self-synchronization and controlled synchronization

被引:223
作者
Blekhman, II
Fradkov, AL
Nijmeijer, H
Pogromsky, AY
机构
[1] RUSSIAN ACAD SCI, INST PROBLEMS MECH ENGN, ST PETERSBURG 199178, RUSSIA
[2] MEKHANOBR TEKHN CORP, ST PETERSBURG 199026, RUSSIA
[3] UNIV TWENTE, DEPT APPL MATH, NL-7500 AE ENSCHEDE, NETHERLANDS
关键词
nonlinear dynamics; nonlinear control; synchronization;
D O I
10.1016/S0167-6911(97)00047-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An attempt is made to give a general formalism for synchronization in dynamical systems encompassing most of the known definitions and applications. The proposed set-up describes synchronization of interconnected systems with respect to a set of functionals and captures peculiarities of both self-synchronization and controlled synchronization. Various illustrative examples are given. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:299 / 305
页数:7
相关论文
共 25 条
[1]  
AFRAIMOVICH VS, 1987, SYNCHRONIZATION OSCI, P795
[2]  
[Anonymous], 1992, STOCHASTIC CHAOTIC O
[3]  
Blekhman, 1994, VIBRATIONAL MECH
[4]  
Blekhman II., 1995, Appl Mech Rev, V48, P733, DOI [10.1115/1.3005090, DOI 10.1115/1.3005090]
[5]  
Blekhman II., 1988, Synchronization in science and technology
[6]  
BLEKHMAN II, 1994, P IUTAM S ACT CONTR, P169
[7]  
BLEKHMAN LI, 1971, SYNCHRONIZATION DYNA
[8]  
Bogolyubov N., 1961, ASYMPTOTIC METHODS T
[9]   ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM [J].
Cuomo, Kevin M. ;
Oppenheim, Alan V. ;
Strogatz, Steven H. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1629-1638
[10]   Speed gradient control of chaotic continuous-time systems [J].
Fradkov, AL ;
Pogromsky, AY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (11) :907-913