Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters

被引:6
作者
Zhang, Li [1 ,2 ,3 ]
Liu, Tao [3 ]
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[3] Shandong Univ Polit Sci & Law, Sch Business, Jinan 250014, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 03期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Variable-order fractional systems; synchronization; external disturbance; unknown parameters; LAG SYNCHRONIZATION; CHAOS; EQUATIONS;
D O I
10.22436/jnsa.009.03.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The full state hybrid projective synchronization (FSHPS) definition for variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters is firstly presented. Then by introducing a compensator and a nonlinear controller, the FSHPS scheme is generated to eliminate the influence of nonlinear external disturbances effectively. Moreover, the parameters are estimated validly. Based on these control methods, appropriate parameters and controller to achieve FSHPS for the variable-order fractional chaotic/hyperchaotic systems are chosen impactfully. Simulations of variable-order fractional Chen and Lii system and fractional order hyperchaotic Lorenz system in the sense of FSHPS are performed and results show the effectiveness of our method. (C)2016 All rights reserved.
引用
收藏
页码:1064 / 1076
页数:13
相关论文
共 40 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[3]   The technique of Volterra-Stieltjes integral equations in the application to infinite systems of nonlinear integral equations of fractional orders [J].
Banas, Jozef ;
Rzepka, Beata .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3108-3116
[4]   Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach [J].
Binazadeh, T. ;
Shafiei, M. H. .
MECHATRONICS, 2013, 23 (07) :888-892
[5]  
Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
[6]   Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems [J].
Dadras, Sara ;
Momeni, Hamid Reza .
MECHATRONICS, 2013, 23 (07) :880-887
[7]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[8]   Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :456-464
[9]   Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong ;
Hu, Aihua .
PHYSICS LETTERS A, 2007, 361 (03) :231-237
[10]   Control of damping oscillations by fractional differential operator with time-dependent order [J].
Ingman, D ;
Suzdalnitsky, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) :5585-5595