Highly parallel genome variant engineering with CRISPR-Cas9

被引:54
作者
Sadhu, Meru J. [1 ,2 ,3 ,4 ]
Bloom, Joshua S. [1 ,2 ,3 ,4 ]
Day, Laura [1 ,2 ,3 ]
Siegel, Jake J. [1 ,2 ,3 ]
Kosuri, Sriram [4 ,5 ,6 ,7 ]
Kruglyak, Leonid [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Inst Quantitat & Computat Biol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[6] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA USA
[7] Univ Calif Los Angeles, Mol Biol Inst, Los Angeles, CA 90024 USA
关键词
MESSENGER-RNA DECAY; SACCHAROMYCES-CEREVISIAE; FUNCTIONAL GENOMICS; GENES; IDENTIFICATION; EXPRESSION; SYSTEM; COMPONENT; PATHWAY; REGIONS;
D O I
10.1038/s41588-018-0087-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Understanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA doublestrand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ)(1). Here, we developed a CRISPR-library-based approach for highly efficient and precise genome-wide variant engineering. We used our method to examine the functional consequences of premature-termination codons (PTCs) at different locations within all annotated essential genes in yeast. We found that most PTCs were highly deleterious unless they occurred close to the 3' end of the gene and did not affect an annotated protein domain. Unexpectedly, we discovered that some putatively essential genes are dispensable, whereas others have large dispensable regions. This approach can be used to profile the effects of large classes of variants in a high-throughput manner.
引用
收藏
页码:510 / +
页数:8
相关论文
共 56 条
[41]   The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus [J].
Scannell, Devin R. ;
Zill, Oliver A. ;
Rokas, Antonis ;
Payen, Celia ;
Dunham, Maitreya J. ;
Eisen, Michael B. ;
Rine, Jasper ;
Johnston, Mark ;
Hittinger, Chris Todd .
G3-GENES GENOMES GENETICS, 2011, 1 (01) :11-25
[42]  
Searle SR., 2006, VARIANCE COMPONENTS
[43]   High-throughput functional genomics using CRISPR-Cas9 [J].
Shalem, Ophir ;
Sanjana, Neville E. ;
Zhang, Feng .
NATURE REVIEWS GENETICS, 2015, 16 (05) :299-311
[44]   RS-1 enhances CRISPR/Cas9-and TALEN-mediated knock-in efficiency [J].
Song, Jun ;
Yang, Dongshan ;
Xu, Jie ;
Zhu, Tianqing ;
Chen, Y. Eugene ;
Zhang, Jifeng .
NATURE COMMUNICATIONS, 2016, 7
[45]   The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton [J].
Spelbrink, RG ;
Nothwehr, SF .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (12) :4263-4281
[46]   The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine [J].
Stenson, Peter D. ;
Mort, Matthew ;
Ball, Edward V. ;
Shaw, Katy ;
Phillips, Andrew D. ;
Cooper, David N. .
HUMAN GENETICS, 2014, 133 (01) :1-9
[47]   Identification of Saccharomyces cerevisiae DNA ligase .4. Involvement in DNA double-strand break repair [J].
Teo, SH ;
Jackson, SP .
EMBO JOURNAL, 1997, 16 (15) :4788-4795
[48]   The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae [J].
TerBush, DR ;
Maurice, T ;
Roth, D ;
Novick, P .
EMBO JOURNAL, 1996, 15 (23) :6483-6494
[49]   Coefficients of Determination in Logistic Regression Models-A New Proposal: The Coefficient of Discrimination [J].
Tjur, Tue .
AMERICAN STATISTICIAN, 2009, 63 (04) :366-372
[50]   NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae [J].
Valencia, M ;
Bentele, M ;
Vaze, MB ;
Herrmann, G ;
Kraus, E ;
Lee, SE ;
Schär, P ;
Haber, JE .
NATURE, 2001, 414 (6864) :666-669