A Universal Method of Producing Transparent Electrodes Using Wide- Bandgap Materials

被引:41
作者
Kim, Hee-Dong [1 ]
An, Ho-Myoung [1 ]
Kim, Kyoung Heon [1 ]
Kim, Su Jin [1 ]
Kim, Chi Sun [2 ]
Cho, Jaehee [3 ]
Schubert, E. Fred [3 ]
Kim, Tae Geun [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[2] LG Elect, LG Adv Res Inst, Mat & Components Lab, Seoul 137724, South Korea
[3] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
基金
新加坡国家研究基金会;
关键词
LEDs; conducting filaments; transparent conductive electrodes; LIGHT-EMITTING-DIODES; WORK FUNCTION; ALGAN; CONDUCTIVITY; EFFICIENCY; CONTACTS; GROWTH; NI/ITO;
D O I
10.1002/adfm.201301697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A UV light-emitting diode (LED) is an eco-friendly optical source with diverse applications. However, currently, the external quantum efficiency (EQE) of AlGaN-based UV LEDs, particularly in the UV-C band (<280 nm), is very low (<11%) mainly due to a large optical absorption via p-GaN contact layers. A direct Ohmic contact to p-AlGaN layers should be obtained using UV-transparent conductive electrodes (TCEs) to solve this problem. A universal method is presented here to make such contact using electrical breakdown, with wide-bandgap materials, to form conductive filaments (CFs), providing a current path between the TCEs and the p-(Al)GaN layers. The contact resistance between the TCEs and the p-GaN layers (or p-AlGaN) is found to be on the order of 10(-5) cm(2) (or 10(-3) cm(2)), while optical transmittance is maintained up to 95% for AlN-based TCEs at 250 nm. These findings could be a critical turning point delivering a breakthrough in UV LED technologies.
引用
收藏
页码:1575 / 1581
页数:7
相关论文
共 30 条
[1]   CONTACT RESISTANCE AND CONTACT RESISTIVITY [J].
BERGER, HH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1972, 119 (04) :507-&
[2]   MODELS FOR CONTACTS TO PLANAR DEVICES [J].
BERGER, HH .
SOLID-STATE ELECTRONICS, 1972, 15 (02) :145-&
[3]   AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes [J].
Chae, Dong Ju ;
Kim, Dong Yoon ;
Kim, Tae Geun ;
Sung, Yun Mo ;
Kim, Moon Doeck .
APPLIED PHYSICS LETTERS, 2012, 100 (08)
[4]   Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device [J].
Chen, C. ;
Yang, Y. C. ;
Zeng, F. ;
Pan, F. .
APPLIED PHYSICS LETTERS, 2010, 97 (08)
[5]   Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening [J].
Fujii, T ;
Gao, Y ;
Sharma, R ;
Hu, EL ;
DenBaars, SP ;
Nakamura, S .
APPLIED PHYSICS LETTERS, 2004, 84 (06) :855-857
[6]   Improvement in Output Power of 280-nm Deep Ultraviolet Light-Emitting Diode by Using AlGaN Multi Quantum Wells [J].
Fujioka, Akira ;
Misaki, Takao ;
Murayama, Takashi ;
Narukawa, Yukio ;
Mukai, Takashi .
APPLIED PHYSICS EXPRESS, 2010, 3 (04)
[7]   ITO-free flexible organic solar cells with printed current collecting grids [J].
Galagan, Yulia ;
Rubingh, Jan-Eric J. M. ;
Andriessen, Ronn ;
Fan, Chia-Chen ;
Blom, Paul W. M. ;
Veenstra, Sjoerd C. ;
Kroon, Jan M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (05) :1339-1343
[8]   Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility [J].
Helander, M. G. ;
Wang, Z. B. ;
Qiu, J. ;
Greiner, M. T. ;
Puzzo, D. P. ;
Liu, Z. W. ;
Lu, Z. H. .
SCIENCE, 2011, 332 (6032) :944-947
[9]   222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire [J].
Hirayama, Hideki ;
Fujikawa, Sachie ;
Noguchi, Norimichi ;
Norimatsu, Jun ;
Takano, Takayoshi ;
Tsubaki, Kenji ;
Kamata, Norihiko .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (06) :1176-1182
[10]   Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process [J].
Hong, HG ;
Kim, SS ;
Kim, DY ;
Lee, T ;
Song, JO ;
Cho, JH ;
Sone, C ;
Park, Y ;
Seong, TY .
APPLIED PHYSICS LETTERS, 2006, 88 (10)