Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode

被引:801
作者
Zhang, Wenchao [1 ,2 ]
Mao, Jianfeng [2 ]
Li, Sean [3 ]
Chen, Zhixin [1 ]
Guo, Zaiping [1 ,2 ]
机构
[1] Univ Wollongong, Engn Mat Inst, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2500, Australia
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[3] Univ New South Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
ENERGY-STORAGE; SODIUM; ELECTRODES; CARBON; INTERCALATION;
D O I
10.1021/jacs.6b12185
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (PIBs) are interesting as one of the alternative metal-ion battery systems to lithium-ion batteries (LIBs) due to the abundance and low cost of potassium. We have herein investigated Sn4P3/C composite as a novel anode material for PIBs. The electrode delivered a reversible capacity of 384.8 mA h g(-1) at 50 mA g(-1) and a good rate capability of 221.9 mA h g(-1), even at 1 A CI. Its electrochemical performance is better than any anode material reported so far for PIBs. It was also found that the Sn4P3/C electrode displays a discharge potential plateau of 0.1 V in PIBs, slightly higher than for sodium-ion batteries (SIBs) (0.01 V), and well above the plating potential of metal. This diminishes the formation of dendrites during cycling, and thus Sn4P3 is a relatively safe anode material, especially for application in large-scale energy storage, where large amounts of electrode materials are used. Furthermore, a possible reaction mechanism of the Sn4P3/C composite as PIB anode is proposed. This work may open up a new avenue for further development of alloy-based anodes with high capacity and long cycle life for PIBs.
引用
收藏
页码:3316 / 3319
页数:4
相关论文
共 24 条
[1]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[2]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[3]   Hybrid energy storage: the merging of battery and supercapacitor chemistries [J].
Dubal, D. P. ;
Ayyad, O. ;
Ruiz, V. ;
Gomez-Romero, P. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1777-1790
[4]   Potassium Secondary Batteries [J].
Eftekhari, Ali ;
Jian, Zelang ;
Ji, Xiulei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4404-4419
[5]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[6]   Exploration of K2Ti8O17 as an anode material for potassium-ion batteries [J].
Han, Jin ;
Xu, Maowen ;
Niu, Yubin ;
Li, Guan-Nan ;
Wang, Minqiang ;
Zhang, Yan ;
Jia, Min ;
Li, Chang Ming .
CHEMICAL COMMUNICATIONS, 2016, 52 (75) :11274-11276
[7]   Charge carriers in rechargeable batteries: Na ions vs. Li ions [J].
Hong, Sung You ;
Kim, Youngjin ;
Park, Yuwon ;
Choi, Aram ;
Choi, Nam-Soon ;
Lee, Kyu Tae .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) :2067-2081
[8]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[9]   Carbon Electrodes for K-Ion Batteries [J].
Jian, Zelang ;
Luo, Wei ;
Ji, Xiulei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11566-11569
[10]   The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage [J].
Kundu, Dipan ;
Talaie, Elahe ;
Duffort, Victor ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) :3431-3448