On the Einstein standard stationary space-times

被引:0
|
作者
Riahi, Moncef [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte UR17ES21, Dynam Syst & Their Applicat, Jarzouna 7021, Tunisia
关键词
Stationary space-times; curvature; Einstein manifold; conformal vector field; METRICS; NONEXISTENCE; MANIFOLDS;
D O I
10.1142/S0219887820501613
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study Einstein standard stationary space-times (M, g) = (R x Sigma, -beta dt(3) + dt circle times g Sigma(xi,.) + g Sigma(xi,.) circle times dt + g Sigma) of dimension n + 1 >= 3 with xi is conformal on the space-like hypersurface (Sigma, g Sigma). When Sigma is assumed to be connected and complete, we give a criterion so that (M, g) is Einstein. In particular, we show that if (M, g) is Einstein and Sigma is complete and connected, then the scalar curvature of M and that of Sigma are non-positive and xi is Killing with respect to g Sigma.
引用
收藏
页数:17
相关论文
共 50 条