Gopakumar-Vafa Type Invariants on Calabi-Yau 4-Folds via Descendent Insertions

被引:16
作者
Cao, Yalong [1 ]
Toda, Yukinobu [1 ]
机构
[1] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
关键词
SHEAVES;
D O I
10.1007/s00220-020-03897-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Gopakumar-Vafa type invariants on Calabi-Yau 4-folds (which are non-trivial only for genus zero and one) are defined by Klemm-Pandharipande from Gromov-Witten theory, and their integrality is conjectured. In a previous work of Cao-Maulik-Toda, DT4 invariants with primary insertions on moduli spaces of one dimensional stable sheaves are used to give a sheaf theoretical interpretation of the genus zero GV type invariants. In this paper, we propose a sheaf theoretical interpretation of the genus one GV type invariants using descendent insertions on the above moduli spaces. The conjectural formula in particular implies nontrivial constraints on genus zero GV type (equivalently GW) invariants of CY 4-folds which can be proved by the WDVV equation.
引用
收藏
页码:281 / 310
页数:30
相关论文
共 29 条
[1]   Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds [J].
Borisov, Dennis ;
Joyce, Dominic .
GEOMETRY & TOPOLOGY, 2017, 21 (06) :3231-3311
[2]  
Cao Y., 2022, ADV MATH, DOI DOI 10.1016/J.AIM.2022.108531
[3]  
Cao Y., ARXIV200409355
[4]  
Cao Y., ARXIV190607856
[5]  
Cao Y., ARXIV14077659
[6]  
Cao Y., J EUR MATH SOC JEMS
[7]  
Cao Y., ARXIV200903553
[8]  
Cao Y., ARXIV200910909
[9]   Curve counting and DT/PT correspondence for Calabi-Yau 4-folds [J].
Cao, Yalong ;
Kool, Martijn .
ADVANCES IN MATHEMATICS, 2020, 375
[10]   Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds II: Fano 3-folds [J].
Cao, Yalong .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)