Future Response of Temperature and Precipitation to Reduced Aerosol Emissions as Compared with Increased Greenhouse Gas Concentrations

被引:48
作者
Navarro, Juan C. Acosta [1 ,2 ]
Ekman, Annica M. L. [2 ,3 ]
Pausata, Francesco S. R. [2 ,3 ]
Lewinschal, Anna [2 ,3 ]
Varma, Vidya [4 ]
Seland, Oyvind [5 ]
Gauss, Michael [5 ]
Iversen, Trond [5 ]
Kirkevag, Alf [5 ]
Riipinen, Ilona [1 ,2 ]
Hansson, Hans Christen [1 ,2 ]
机构
[1] Stockholm Univ, Dept Environm Sci & Analyt Chem, Stockholm, Sweden
[2] Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden
[3] Stockholm Univ, Dept Meteorol, Stockholm, Sweden
[4] Natl Inst Water & Atmospher Res, Wellington, New Zealand
[5] Norwegian Meteorol Inst, Oslo, Norway
基金
欧洲研究理事会;
关键词
INTERTROPICAL CONVERGENCE ZONE; CLIMATE RESPONSE; GLOBAL CLIMATE; SYSTEM; SENSITIVITY; POSITION; MODEL; CYCLE;
D O I
10.1175/JCLI-D-16-0466.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-49 a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 and 0.84 K, respectively, as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a nonsignificant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the representative concentration pathway 4.5 (RCP4.5) emission scenario leads to a global and Arctic warming of 0.35 and 0.94 K, respectively. The model yields a marked annual average northward shift in the intertropical convergence zone with decreasing aerosol emissions and subsequent warming of the Northern Hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres, and there is no marked shift in the annual average position of the intertropical convergence zone. The strong reduction in aerosol emissions in the MFR scenario also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast Asia and East Asia causing an increase in precipitation over a large part of this region.
引用
收藏
页码:939 / 954
页数:16
相关论文
共 43 条
[1]   A parameterization of aerosol activation 2. Multiple aerosol types [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D5) :6837-6844
[2]   Climate responses to anthropogenic emissions of short-lived climate pollutants [J].
Baker, L. H. ;
Collins, W. J. ;
Olivie, D. J. L. ;
Cherian, R. ;
Hodnebrog, O. ;
Myhre, G. ;
Quaas, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (14) :8201-8216
[3]   Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate [J].
Bellouin, Nicolas ;
Rae, Jamie ;
Jones, Andy ;
Johnson, Colin ;
Haywood, Jim ;
Boucher, Olivier .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[4]   The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate [J].
Bentsen, M. ;
Bethke, I. ;
Debernard, J. B. ;
Iversen, T. ;
Kirkevag, A. ;
Seland, O. ;
Drange, H. ;
Roelandt, C. ;
Seierstad, I. A. ;
Hoose, C. ;
Kristjansson, J. E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) :687-720
[5]  
Bjerknes J., 1964, ADV GEOPHYS, V10, P1, DOI [10.1016/S0065-2687(08)60005-9, DOI 10.1016/S0065-2687(08)60005-9]
[6]   Dynamical aspects of climate sensitivity [J].
Boer, GJ ;
Yu, B .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (03) :35-1
[7]  
Boucher O, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P571, DOI 10.1017/cbo9781107415324.016
[8]   The annual cycle of the energy budget. Part I: Global mean and land-ocean exchanges [J].
Fasullo, John T. ;
Trenberth, Kevin E. .
JOURNAL OF CLIMATE, 2008, 21 (10) :2297-2312
[9]   GLOBAL SURFACE TEMPERATURE CHANGE [J].
Hansen, J. ;
Ruedy, R. ;
Sato, M. ;
Lo, K. .
REVIEWS OF GEOPHYSICS, 2010, 48
[10]   Mechanisms of Forced Tropical Meridional Energy Flux Change [J].
Hill, Spencer A. ;
Ming, Yi ;
Held, Isaac M. .
JOURNAL OF CLIMATE, 2015, 28 (05) :1725-1742