A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data

被引:13
作者
Hsu, Chiu-Hsieh [1 ,2 ]
Long, Qi [3 ]
Li, Yisheng [4 ]
Jacobs, Elizabeth [1 ,2 ]
机构
[1] Univ Arizona, Div Epidemiol & Biostat, Coll Publ Hlth, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Canc Ctr, Coll Med, Tucson, AZ 85724 USA
[3] Emory Univ, Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Missing at random; Multiple imputation; Nearest neighbor; Nonparametric imputation; LIKELIHOOD; REGRESSION; TRIAL;
D O I
10.1080/10543406.2014.888444
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate information using the predictive covariates while estimating the association between the outcome and the covariates. To conduct the imputation, two working models are fitted to define an imputing set. This approach is expected to be robust to the underlying distribution of the data. We show in simulation and demonstrate on a colorectal data set that the proposed approach can improve efficiency and reduce bias in a situation with missing at random compared to the complete case analysis and the modified inverse probability weighted method.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
[41]   Multiple imputation of ordinal missing not at random data [J].
Angelina Hammon .
AStA Advances in Statistical Analysis, 2023, 107 :671-692
[42]   Multiple imputation of unordered categorical missing data: A comparison of the multivariate normal imputation and multiple imputation by chained equations [J].
Karangwa, Innocent ;
Kotze, Danelle ;
Blignaut, Renette .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) :521-539
[43]   Multiple imputation for missing data in a longitudinal cohort study: a tutorial based on a detailed case study involving imputation of missing outcome data [J].
Lee, Katherine J. ;
Roberts, Gehan ;
Doyle, Lex W. ;
Anderson, Peter J. ;
Carlin, John B. .
INTERNATIONAL JOURNAL OF SOCIAL RESEARCH METHODOLOGY, 2016, 19 (05) :575-591
[44]   A New Approach for Missing Data Imputation in Big Data Interface [J].
Wang, Chunzhi ;
Shakhovska, Nataliya ;
Sachenko, Anatoliy ;
Komar, Myroslav .
INFORMATION TECHNOLOGY AND CONTROL, 2020, 49 (04) :541-555
[45]   A bias-corrected estimator in multiple imputation for missing data [J].
Tomita, Hiroaki ;
Fujisawa, Hironori ;
Henmi, Masayuki .
STATISTICS IN MEDICINE, 2018, 37 (23) :3373-3386
[46]   Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation [J].
Yan, Yu ;
Sankar, Baradwaj Simha ;
Mirza, Bilal ;
Ng, Dominic C. M. ;
Pelletier, Alexander R. ;
Huang, Sarah D. ;
Wang, Wei ;
Watson, Karol ;
Wang, Ding ;
Ping, Peipei .
JOURNAL OF PROTEOME RESEARCH, 2024, 23 (09) :4151-4162
[47]   Iterated imputation estimation for generalized linear models with missing response and covariate values [J].
Fang, Fang ;
Shao, Jun .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 :111-123
[48]   Application of Sequential Regression Multivariate Imputation Method on Multivariate Normal Missing Data [J].
Nurzaman ;
Siswantining, Titin ;
Soemartojo, Saskya Mary ;
Sarwinda, Devvi .
2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
[49]   From Predictive Methods to Missing Data Imputation: An Optimization Approach [J].
Bertsimas, Dimitris ;
Pawlowski, Colin ;
Zhuo, Ying Daisy .
JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
[50]   Imputation of Missing Values in Training Data using Variational Autoencoder [J].
Hong, Xuerui ;
Hao, Shuang .
2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, :49-54