A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data

被引:13
作者
Hsu, Chiu-Hsieh [1 ,2 ]
Long, Qi [3 ]
Li, Yisheng [4 ]
Jacobs, Elizabeth [1 ,2 ]
机构
[1] Univ Arizona, Div Epidemiol & Biostat, Coll Publ Hlth, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Canc Ctr, Coll Med, Tucson, AZ 85724 USA
[3] Emory Univ, Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Missing at random; Multiple imputation; Nearest neighbor; Nonparametric imputation; LIKELIHOOD; REGRESSION; TRIAL;
D O I
10.1080/10543406.2014.888444
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate information using the predictive covariates while estimating the association between the outcome and the covariates. To conduct the imputation, two working models are fitted to define an imputing set. This approach is expected to be robust to the underlying distribution of the data. We show in simulation and demonstrate on a colorectal data set that the proposed approach can improve efficiency and reduce bias in a situation with missing at random compared to the complete case analysis and the modified inverse probability weighted method.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
[31]   Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note [J].
Simon Grund ;
Oliver Lüdtke ;
Alexander Robitzsch .
Behavior Research Methods, 2016, 48 :640-649
[32]   A Bayesian multiple imputation approach to bivariate functional data with missing components [J].
Jang, Jeong Hoon ;
Manatunga, Amita K. ;
Chang, Changgee ;
Long, Qi .
STATISTICS IN MEDICINE, 2021, 40 (22) :4772-4793
[33]   Latent class based multiple imputation approach for missing categorical data [J].
Gebregziabher, Mulugeta ;
DeSantis, Stacia M. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) :3252-3262
[34]   Tackling UCR's missing data problem: A multiple imputation approach [J].
DeLang, Mason ;
Taheri, Sema A. ;
Hutchison, Robert ;
Hawke, Nathan .
JOURNAL OF CRIMINAL JUSTICE, 2022, 79
[35]   Handling missing data: analysis of a challenging data set using multiple imputation [J].
Pampaka, Maria ;
Hutcheson, Graeme ;
Williams, Julian .
INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION, 2016, 39 (01) :19-37
[36]   REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS [J].
SCHNEIDERMAN, ED ;
KOWALSKI, CJ ;
WILLIS, SM .
INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02) :121-133
[37]   Nonlinear multiple imputation for continuous covariate within semiparametric Cox model: application to HIV data in Senegal [J].
Mbougua, Jules Brice Tchatchueng ;
Laurent, Christian ;
Ndoye, Ibra ;
Delaporte, Eric ;
Gwet, Henri ;
Molinari, Nicolas .
STATISTICS IN MEDICINE, 2013, 32 (26) :4651-4665
[38]   Imputation of missing values in multi-view data [J].
van Loon, Wouter ;
de Vos, Frank ;
de Vos, Frank ;
Koini, Marisa ;
Schmidt, Reinhold ;
de Rooij, Mark .
INFORMATION FUSION, 2024, 111
[39]   Introduction to multiple imputation for dealing with missing data [J].
Lee, Katherine J. ;
Simpson, Julie A. .
RESPIROLOGY, 2014, 19 (02) :162-167
[40]   Regression multiple imputation for missing data analysis [J].
Yu, Lili ;
Liu, Liang ;
Peace, Karl E. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) :2647-2664