A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data

被引:13
作者
Hsu, Chiu-Hsieh [1 ,2 ]
Long, Qi [3 ]
Li, Yisheng [4 ]
Jacobs, Elizabeth [1 ,2 ]
机构
[1] Univ Arizona, Div Epidemiol & Biostat, Coll Publ Hlth, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Canc Ctr, Coll Med, Tucson, AZ 85724 USA
[3] Emory Univ, Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Missing at random; Multiple imputation; Nearest neighbor; Nonparametric imputation; LIKELIHOOD; REGRESSION; TRIAL;
D O I
10.1080/10543406.2014.888444
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate information using the predictive covariates while estimating the association between the outcome and the covariates. To conduct the imputation, two working models are fitted to define an imputing set. This approach is expected to be robust to the underlying distribution of the data. We show in simulation and demonstrate on a colorectal data set that the proposed approach can improve efficiency and reduce bias in a situation with missing at random compared to the complete case analysis and the modified inverse probability weighted method.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
[21]   A multiple imputation approach to nonlinear mixed-effects models with covariate measurement errors and missing values [J].
Liu, Wei ;
Li, Shuyou .
JOURNAL OF APPLIED STATISTICS, 2015, 42 (03) :463-476
[22]   Nonparametric multiple imputation for receiver operating characteristics analysis when some biomarker values are missing at random [J].
Long, Qi ;
Zhang, Xiaoxi ;
Hsu, Chiu-Hsieh .
STATISTICS IN MEDICINE, 2011, 30 (26) :3149-3161
[23]   Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values [J].
White, Ian R. ;
Carlin, John B. .
STATISTICS IN MEDICINE, 2010, 29 (28) :2920-2931
[24]   Multiple imputation of missing data for survey data analysis [J].
Lupo, Coralie ;
Le Bouquin, Sophie ;
Michel, Virginie ;
Colin, Pierre ;
Chauvin, Claire .
EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53) :73-83
[25]   The performance of multiple imputation for missing covariate data within the context of regression relative survival analysis [J].
Giorgi, Roch ;
Belot, Aurelien ;
Gaudart, Jean ;
Launoy, Guy .
STATISTICS IN MEDICINE, 2008, 27 (30) :6310-6331
[26]   Multiple imputation of missing values: update [J].
Royston, P .
STATA JOURNAL, 2005, 5 (02) :188-201
[27]   Quantile Regression-Based Multiple Imputation of Missing Values - An Evaluation and Application to Corporal Punishment Data [J].
Kleinke, Kristian ;
Fritsch, Markus ;
Stemmler, Mark ;
Reinecke, Jost ;
Loesel, Friedrich .
METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2021, 17 (03) :205-230
[28]   Multiple Imputation for Missing Data Using Genetic Programming [J].
Cao Truong Tran ;
Zhang, Mengjie ;
Andreae, Peter .
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, :583-590
[29]   Missing data and multiple imputation in clinical epidemiological research [J].
Pedersen, Alma B. ;
Mikkelsen, Ellen M. ;
Cronin-Fenton, Deirdre ;
Kristensen, Nickolaj R. ;
Tra My Pham ;
Pedersen, Lars ;
Petersen, Irene .
CLINICAL EPIDEMIOLOGY, 2017, 9 :157-165
[30]   Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note [J].
Grund, Simon ;
Luedtke, Oliver ;
Robitzsch, Alexander .
BEHAVIOR RESEARCH METHODS, 2016, 48 (02) :640-649