Periodic boundary value problem for first-order impulsive ordinary differential equations

被引:38
作者
He, ZM [1 ]
Yu, JS [1 ]
机构
[1] Cent S Univ, Dept Appl Math, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive differential equation; periodic boundary value problem; upper and lower solution; monotone iterative technique;
D O I
10.1016/S0022-247X(02)00133-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence of minimal and maximal solutions of the periodic boundary value problem for first-order impulsive differential equations by establishing two comparison results and using the method of upper and lower solutions and the monotone iterative technique. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 10 条
[1]  
[Anonymous], J MATH PHYS SCI
[2]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[3]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[4]   REMARKS ON 1ST AND 2ND ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
LAKSHMIKANTHAM, V ;
LEELA, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (03) :281-287
[5]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6
[6]  
LAKSHMIKANTHAM V, 1989, THOEYR IMPULSIVE DIF
[7]   Basic theory for nonresonance impulsive periodic problems of first order [J].
Nieto, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) :423-433
[8]   Periodic boundary value problems for nonlinear first order ordinary differential equations [J].
Nieto, JJ ;
AlvarezNoriega, N .
ACTA MATHEMATICA HUNGARICA, 1996, 71 (1-2) :49-58
[10]  
Vatsala A S, 1992, APPL ANAL, V44, P145