HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION

被引:21
作者
Piszczek, Magdalena [1 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
关键词
linear equation; hyperstability; GAVRUTA-RASSIAS STABILITY;
D O I
10.4134/BKMS.2015.52.6.1827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some results on hyperstability for the general linear equation. Namely, we show that a function satisfying the linear equation approximately (in some sense) must be actually the solution of it.
引用
收藏
页码:1827 / 1838
页数:12
相关论文
共 19 条
[11]  
Kuczma M., 1985, INTRO THEORY FUNCTIO
[12]  
Nakmahachalasint P., 2007, INT J MATH SCI, V2007
[13]   Remark on hyperstability of the general linear equation [J].
Piszczek, Magdalena .
AEQUATIONES MATHEMATICAE, 2014, 88 (1-2) :163-168
[14]   On the Stability of the General Linear Equation [J].
Popa, Dorian .
RESULTS IN MATHEMATICS, 2009, 53 (3-4) :383-389
[15]   ON APPROXIMATION OF APPROXIMATELY LINEAR MAPPINGS BY LINEAR MAPPINGS [J].
RASSIAS, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :126-130
[16]   SOLUTION OF A PROBLEM OF ULAM [J].
RASSIAS, JM .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (03) :268-273
[17]  
Ravi K, 2007, INT J APPL MATH STAT, V7, P143
[18]  
Ravi K., 2010, Global J. Appl. Math. Sci., V3, P57
[19]  
SiBaha MA, 2007, INT J APPL MATH STAT, V7, P157