HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION

被引:21
作者
Piszczek, Magdalena [1 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
关键词
linear equation; hyperstability; GAVRUTA-RASSIAS STABILITY;
D O I
10.4134/BKMS.2015.52.6.1827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some results on hyperstability for the general linear equation. Namely, we show that a function satisfying the linear equation approximately (in some sense) must be actually the solution of it.
引用
收藏
页码:1827 / 1838
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 2002, NONLINEAR FUNCT ANAL
[2]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[3]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[4]   Hyperstability and Superstability [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[5]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[6]   A note on stability of the general linear equation [J].
Brzdek, Janusz ;
Pietrzyk, Andrzej .
AEQUATIONES MATHEMATICAE, 2008, 75 (03) :267-270
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]  
Gavruta P., 1999, ADV EQUATIONS INEQUA
[9]  
Isac G., 1998, Stability of Functional Equation in Several Variables, P1
[10]  
Jung S.M., 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis