Dynamic Task Offloading in MEC-Enabled IoT Networks: A Hybrid DDPG-D3QN Approach

被引:10
作者
Hu, Han [1 ,2 ]
Wu, Dingguo [1 ,2 ]
Zhou, Fuhui [3 ]
Jin, Shi [4 ]
Hu, Rose Qingyang [5 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Wireless Commun, Nanjing 210000, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Broadband Wireless Commun & Inter, Nanjing 210000, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, tColl Elect & Informat Engn, Nanjing 210000, Peoples R China
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing, Peoples R China
[5] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Mobile edge computing (MEC); dynamic offloading; deep reinforcement learning; Internet of Things (IoT);
D O I
10.1109/GLOBECOM46510.2021.9685906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) has recently emerged as an enabling technology to support computation-intensive and delay-critical applications for energy-constrained and computation-limited Internet of Things (IoT). Due to the time-varying channels and dynamic task patterns, there exist many challenges to make efficient and effective computation offloading decisions, especially in the multi-server multi-user IoT networks, where the decisions involve both continuous and discrete actions. In this paper, we investigate computation task offloading in a dynamic environment and formulate a task offloading problem to minimize the average long-term service cost in terms of power consumption and buffering delay. To enhance the estimation of the long-term cost, we propose a deep reinforcement learning based algorithm, where deep deterministic policy gradient (DDPG) and dueling double deep Q networks (D3QN) are invoked to tackle continuous and discrete action domains, respectively. Simulation results validate that the proposed DDPG-D3QN algorithm exhibits better stability and faster convergence than the existing methods, and the average system service cost is decreased obviously.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach
    Chen, Zhao
    Wang, Xiaodong
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [2] QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT
    He, Xiaoming
    Wang, Kun
    Xu, Wenyao
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (04) : 12 - 20
  • [3] Green Resource Allocation Based on Deep Reinforcement Learning in Content-Centric IoT
    He, Xiaoming
    Wang, Kun
    Huang, Huawei
    Miyazaki, Toshiaki
    Wang, Yixuan
    Guo, Song
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2020, 8 (03) : 781 - 796
  • [4] Hu H., IEEE INTERNET THINGS
  • [5] Resource Optimization for Delay-Tolerant Data in Blockchain-Enabled IoT With Edge Computing: A Deep Reinforcement Learning Approach
    Li, Meng
    Yu, F. Richard
    Si, Pengbo
    Wu, Wenjun
    Zhang, Yanhua
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9399 - 9412
  • [6] Edge QoE: Computation Offloading With Deep Reinforcement Learning for Internet of Things
    Lu, Haodong
    He, Xiaoming
    Du, Miao
    Ruan, Xiukai
    Sun, Yanfei
    Wang, Kun
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9255 - 9265
  • [7] Stochastic Joint Radio and Computational Resource Management for Multi-User Mobile-Edge Computing Systems
    Mao, Yuyi
    Zhang, Jun
    Song, S. H.
    Letaief, Khaled B.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (09) : 5994 - 6009
  • [8] Dynamic Computation Offloading in Multi-Access Edge Computing via Ultra-Reliable and Low-Latency Communications
    Merluzzi, Mattia
    Di Lorenzo, Paolo
    Barbarossa, Sergio
    Frascolla, Valerio
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 (06): : 342 - 356
  • [9] Learning-Based Computation Offloading for IoT Devices With Energy Harvesting
    Min, Minghui
    Xiao, Liang
    Chen, Ye
    Cheng, Peng
    Wu, Di
    Zhuang, Weihua
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (02) : 1930 - 1941
  • [10] Research Directions for the Internet of Things
    Stankovic, John A.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2014, 1 (01): : 3 - 9