Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation

被引:62
作者
de Bouard, Anne [1 ]
Debussche, Arnaud
机构
[1] Univ Paris 11, Math Lab, CNRS, F-91405 Orsay, France
[2] IRMAR, F-35170 Bruz, France
[3] ENS Cachan, Antenne Bretagne, F-35170 Bruz, France
关键词
nonlinear Schrodinger equations; stochastic partial differential equations; numerical schemes; rate of convergence;
D O I
10.1007/s00245-006-0875-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1.
引用
收藏
页码:369 / 399
页数:31
相关论文
共 31 条
[1]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[2]  
Bang O., 1995, Applicable Analysis, V57, P3, DOI 10.1080/00036819508840335
[3]   Numerical study of two-dimensional stochastic NLS equations [J].
Barton-Smith, M ;
Debussche, A ;
Di Menza, L .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (04) :810-842
[4]  
Bensoussan A., 1973, J. Funct. Anal, V13, P195, DOI [10.1016/0022-1236(73)90045-1, DOI 10.1016/0022-1236(73)90045-1]
[5]   Weak approximation of stochastic differential delay equations [J].
Buckwar, E ;
Shardlow, T .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (01) :57-86
[6]   A stochastic nonlinear Schrodinger equation with multiplicative noise [J].
de Bouard, A ;
Debussche, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :161-181
[7]   Blow-up for the stochastic nonlinear Schrodinger equation with multiplicative noise [J].
De Bouard, A ;
Debussche, A .
ANNALS OF PROBABILITY, 2005, 33 (03) :1078-1110
[8]   A semi-discrete scheme for the stochastic nonlinear Schrodinger equation [J].
De Bouard, A ;
Debussche, A .
NUMERISCHE MATHEMATIK, 2004, 96 (04) :733-770
[9]   The stochastic nonlinear Schrodinger equation in H 1 [J].
de Bouard, A ;
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (01) :97-126
[10]   On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrodinger equation [J].
de Bouard, A ;
Debussche, A .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (01) :76-96