A first-principles study on the electronic and optical properties of a type-II C2N/g-ZnO van der Waals heterostructure

被引:31
|
作者
Song, Jianxun [1 ]
Zheng, Hua [1 ]
Liu, Minxia [1 ]
Zhang, Geng [1 ]
Ling, Dongxiong [1 ]
Wei, Dongshan [1 ]
机构
[1] Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; VDW HETEROSTRUCTURE; MAGNETIC-PROPERTIES; FIELD; ZNO; STRAIN; WATER; HETEROJUNCTION; ABSORPTION; EFFICIENCY;
D O I
10.1039/d1cp00122a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural, electronic and optical properties of a new van der Waals heterostructure, C2N/g-ZnO, composed of C2N and g-ZnO monolayers with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Gamma point, are extensively studied using first-principles density functional theory calculations. The results indicate that the special optoelectronic properties of the constructed heterostructure mainly originate from the interlayer coupling and electron transfer between the C2N and g-ZnO monolayers, and the photogenerated electrons and holes are located on the C2N and g-ZnO layers, respectively, which reduces the recombination probability of the electron-hole pairs. According to Bader charge analysis, there are 0.029 electrons transferred from g-ZnO to C2N to form a built-in electric field of similar to 9.5 eV at the interface. Furthermore, the tunability of the electronic properties of the C2N/g-ZnO heterostructure under vertical strain and electric field is explored. Under different strains, the type-II band alignment properties of the heterostructure are retained and the vertical compressive strain has a greater influence on the bandgap modulation than the vertical stretching strain. The implemented electric field also does not change the type-II band alignment but changes the bandgap of the heterostructure from 1.30 to 0.58 eV when the electric field strength varies from -0.6 to 0.6 V angstrom(-1). In addition, the absorption spectrum of the C2N/g-ZnO heterostructure under solar light is also studied. The absorption range of the heterostructure varies from the ultraviolet to near-infrared region with the absorption intensity in the order of 10(5) cm(-1). All of these studies indicate that the C2N/g-ZnO heterostructure has excellent electronic and optical properties and promising applications in nanoelectronics and optoelectronics.
引用
收藏
页码:3963 / 3973
页数:11
相关论文
共 50 条
  • [1] Electronic and Optical Properties of the Type-II GaN/SiH van der Waals Heterostructure: A First-Principles Study
    Lv, Lin
    Ma, Xin
    Lou, Wenbo
    Zhang, Xiaomei
    Shen, Chenhai
    Xia, Congxin
    Liu, Yufang
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (07):
  • [2] Tunable electronic and optical properties of a type-II GaP/SiH van der Waals heterostructure as photocatalyst: A first-principles study
    Bao, Aida
    Ma, Yongqiang
    Guo, Xin
    Wang, Jie
    Zhao, Yongpeng
    Liu, Zeng
    Wang, Yayou
    Liu, Xinyi
    Zhang, Yi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 1256 - 1266
  • [3] Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations
    Hui Yao
    Qi Yao
    Hao Wang
    Yaping Wu
    Yinghui Zhou
    Huiqiong Wang
    Xiaohang Chen
    Huahan Zhan
    Shuping Li
    Junyong Kang
    Journal of Electronic Materials, 2020, 49 : 4557 - 4562
  • [4] Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations
    Yao, Hui
    Yao, Qi
    Wang, Hao
    Wu, Yaping
    Zhou, Yinghui
    Wang, Huiqiong
    Chen, Xiaohang
    Zhan, Huahan
    Li, Shuping
    Kang, Junyong
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (08) : 4557 - 4562
  • [5] First-principles study on electronic and optical properties of van der Waals heterostructures stacked by g-ZnO and Janus-WSSe monolayers
    Feng, Shiquan
    Liu, Jiankang
    Chen, Jun
    Su, Lei
    Guo, Feng
    Tang, Cuiming
    Yuan, Chaosheng
    Cheng, Xuerui
    APPLIED SURFACE SCIENCE, 2022, 604
  • [6] A promising blue phosphorene/C2N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study
    Li, Chong
    Xu, Ying
    Sheng, Wei
    Yin, Wen-Jin
    Nie, Guo-Zheng
    Ao, Zhimin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (02) : 615 - 623
  • [7] Robust type-II BP/AlN van der Waals heterostructure: A first-principles study
    Meng, Lan
    Huang, Qinqin
    Liu, Chunsheng
    Li, Heng
    Yan, Wei
    Zhao, Qiang
    Yan, Xiaohong
    CHEMICAL PHYSICS LETTERS, 2021, 781
  • [8] First-principles study of the electronic structures and optical properties of g-ZnO/CdX (X = S, Se, Te) van der Waals heterostructures
    Ren, Xinle
    Huang, Yan
    Zhang, Xiaozhe
    Su, Junhong
    Sun, Shaodong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (01)
  • [9] A type-II MoS2/GaN van der Waals heterostructure with tunable electronic and optical properties based on first principles
    Chen, Guo-Xiang
    Zhang, Qi
    Qu, Wen-Long
    Zhang, Ling
    Wang, Dou-Dou
    Zhang, Jian-Min
    MATERIALS TODAY COMMUNICATIONS, 2025, 42
  • [10] Tunable electronic and optical properties of g-ZnO/α-PtO2 van der Waals heterostructure: A density functional theory study
    Shokri, Asiye
    Yazdani, Ahmad
    Rahimi, Kourosh
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 255