On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains

被引:153
作者
Rychkov, VS [1 ]
机构
[1] Univ Jena, Inst Math, D-07743 Jena, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 60卷
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1112/S0024610799007723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The restrictions B-pq(s)(Omega) and F-pq(s)(Omega) of the Besov and Triebel-Lizorkin spaces of tempered distributions B-pq(s)(R-n) and F-pq(s)(R-n) to Lipschitz domains Omega subset of R-n are studied. For general values of parameters (s is an element of R, p > 0, q > 0) a 'universal' linear bounded extension operator from B-pq(s)(Omega) and F-pq(s)(Omega) into the corresponding spaces on R-n is constructed. The construction is based on a new variant of the Calderon reproducing formula with kernels supported in a fixed cone. Explicit characterizations of the elements of B-pq(s)(Omega) and F-pq(s)(Omega) in terms of their values in Omega are also obtained.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 36 条
[1]  
[Anonymous], CBMS REGIONAL C SERI
[2]  
BESOV OV, 1965, MAT SBORNIK, V66, P80
[3]  
BRUDNYI YA, 1971, T MOSK MAT OBSHCH, V24, P69
[4]   Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the case q<1 [J].
Bui, HQ ;
Paluszynski, M ;
Taibleson, M .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :837-846
[5]  
Bui HQ, 1996, STUD MATH, V119, P219
[6]  
Calderon A. P., 1961, P S PURE MATH, VIV, P33
[7]   H(P) THEORY ON A SMOOTH DOMAIN IN R(N) AND ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
CHANG, DC ;
KRANTZ, SG ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 114 (02) :286-347
[8]  
COHEN A, 1995, IN PRESS T AM MATH S
[9]  
DAHLKE S, 1996, 132 IGPMBERICHTE
[10]  
DeVore R. A., 1993, Grundlehren der mathematischen Wissenschaften, V303