A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia

被引:19
作者
Rose, Laili Che [1 ,6 ]
Bear, Joseph C. [2 ]
McNaughter, Paul D. [1 ]
Southern, Paul [3 ]
Ben Piggott, R. [4 ]
Parkin, Ivan P. [2 ]
Qi, Sheng [5 ]
Mayes, Andrew G. [1 ]
机构
[1] Univ E Anglia, Sch Chem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[3] Royal Inst Great Britain, UCL Healthcare Biomagnet Labs, 21 Albemarle St, London W1S 4BS, England
[4] Inst Food Res, Norwich Res Pk, Norwich NR4 7UA, Norfolk, England
[5] Univ E Anglia, Sch Pharm, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[6] Univ Malaysia Terengganu, Sch Fundamental Sci, Kuala Terengganu 21030, Terengganu Daru, Malaysia
基金
英国生物技术与生命科学研究理事会;
关键词
DELIVERY; NANOTECHNOLOGY; NANOPARTICLES; THERAPY;
D O I
10.1038/srep20271
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Challenges in the development of magnetic particles for therapeutic applications [J].
Barry, Stephen E. .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2008, 24 (06) :451-466
[2]  
Bear J, 2011, SYST BIO, V2, P185, DOI 10.1007/978-1-4419-6956-9_9
[3]   Nanoparticles for Imaging, Sensing, and Therapeutic Intervention [J].
Bogart, Lara K. ;
Pourroy, Genevieve ;
Murphy, Catherine J. ;
Puntes, Victor ;
Pellegrino, Teresa ;
Rosenblum, Daniel ;
Peer, Dan ;
Levy, Raphael .
ACS NANO, 2014, 8 (04) :3107-3122
[4]   The present and future role of photodynamic therapy in cancer treatment [J].
Brown, SB ;
Brown, EA ;
Walker, I .
LANCET ONCOLOGY, 2004, 5 (08) :497-508
[5]   Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram [J].
Cao, J. ;
Gu, Y. ;
Fan, W. ;
Chen, L. Q. ;
Ogletree, D. F. ;
Chen, K. ;
Tamura, N. ;
Kunz, M. ;
Barrett, C. ;
Seidel, J. ;
Wu, J. .
NANO LETTERS, 2010, 10 (07) :2667-2673
[6]   Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating [J].
Chen, Yanjing ;
Bose, Arijit ;
Bothun, Geoffrey D. .
ACS NANO, 2010, 4 (06) :3215-3221
[7]   Magnetic nanoparticles for drug delivery [J].
Dobson, J .
DRUG DEVELOPMENT RESEARCH, 2006, 67 (01) :55-60
[8]   New oral delivery systems for treatment of inflammatory bowel disease [J].
Friend, DR .
ADVANCED DRUG DELIVERY REVIEWS, 2005, 57 (02) :247-265
[9]   Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy [J].
Hergt, Rudolf ;
Dutz, Silvio .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 311 (01) :187-192
[10]   Functionalization of monodisperse magnetic nanoparticles [J].
Lattuada, Marco ;
Hatton, T. Alan .
LANGMUIR, 2007, 23 (04) :2158-2168