The group of braided autoequivalences of the category of comodules over a coquasi-triangular Hopf algebra

被引:8
作者
Zhu, Haixing [1 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing 210037, Jiangsu, Peoples R China
关键词
Coquasi-triangular Hopf algebra; Galois object; Braided autoequivalence; BI-GALOIS OBJECTS; TENSOR CATEGORY; BRAUER GROUP;
D O I
10.1016/j.geomphys.2016.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a coquasi-triangular Hopf algebra. We first show that the group of braided autoequivalences of the category of H-comodules is isomorphic to the group of braided commutative bi-Galois objects. Next, by investigating the latter, we obtain that the group of braided autoequivalences of the representation category of Lusztig's quantum group uq(sl(2))' is isomorphic to the projective special linear group PSL(2), where q is a root of unity of odd order N > 1. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 24 条
  • [1] GALOIS AND BIGALOIS OBJECTS OVER MONOMIAL NON-SEMISIMPLE HOPF ALGEBRAS
    Bichon, Julien
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (05) : 653 - 680
  • [2] THE GROUP OF BI-GALOIS OBJECTS OVER THE COORDINATE ALGEBRA OF THE FROBENIUS-LUSZTIG KERNEL OF SL(2)
    Bichon, Julien
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2016, 58 (03) : 727 - 738
  • [3] On the Brauer-Picard group of a finite symmetric tensor category
    Bontea, Costel-Gabriel
    Nikshych, Dmitri
    [J]. JOURNAL OF ALGEBRA, 2015, 440 : 187 - 218
  • [4] The Picard crossed module of a braided tensor category
    Davydov, Alexei
    Nikshych, Dmitri
    [J]. ALGEBRA & NUMBER THEORY, 2013, 7 (06) : 1365 - 1403
  • [5] Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra
    Dello, Jeroen
    Zhang, Yinhuo
    [J]. JOURNAL OF ALGEBRA, 2016, 445 : 244 - 279
  • [6] DRINFELD VG, 1987, P INT C MATH BERK CA
  • [7] On braided fusion categories I
    Drinfeld, Vladimir
    Gelaki, Shlomo
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 1 - 119
  • [8] Fusion categories and homotopy theory
    Etingof, Pavel
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. QUANTUM TOPOLOGY, 2010, 1 (03) : 209 - 273
  • [9] On the Brauer Groups of Symmetries of Abelian Dijkgraaf-Witten Theories
    Fuchs, Jurgen
    Priel, Jan
    Schweigert, Christoph
    Valentino, Alessandro
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (02) : 385 - 405
  • [10] On the quasitriangularity of Uq(sln)′
    Gelaki, S
    Westreich, S
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 105 - 125