Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces

被引:60
作者
Chang, Shih-Sen [1 ]
机构
[1] Yibin Univ, Dept Math, Yibin 644007, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
nonexpansive mapping; common fixed point; uniformly smooth Banach space; normalized duality mapping;
D O I
10.1016/j.jmaa.2005.11.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, some sufficient and necessary conditions for the iterative sequence to converging to a common fixed point are obtained. The results presented in the paper extend and improve some recent results in [H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279-291; H.K. Xu, Remark on an iterative method for nonexpansive mappings, Comm. Appl. Nonlinear Anal. 10 (2003) 67-75; H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 202 (1996) 150-159; B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961; J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509-520; P.L. Lions, Approximation de points fixes de contractions', C. R. Acad. Sci. Paris Ser. A 284 (1977) 1357-1359; A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241 (2000) 46-55; S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 128-292; R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1402 / 1416
页数:15
相关论文
共 16 条