A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury

被引:129
|
作者
Caron, Ilaria [1 ]
Rossi, Filippo [2 ]
Papa, Simonetta [1 ]
Aloe, Rossella [1 ]
Sculco, Marika [1 ]
Mauri, Emanuele [2 ]
Sacchetti, Alessandro [2 ]
Erba, Eugenio [3 ]
Panini, Nicolo [3 ]
Parazzi, Valentina [4 ]
Barilani, Mario [4 ]
Forloni, Gianluigi [1 ]
Perale, Giuseppe [5 ]
Lazzari, Lorenza [4 ]
Veglianese, Pietro [1 ]
机构
[1] IRCCS Ist Ric Farmacol Mario Negri, Dipartimento Neurosci, I-20156 Milan, Italy
[2] Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, I-20131 Milan, Italy
[3] IRCCS Ist Ric Farmacol Mario Negri, Dipartimento Oncol, I-20156 Milan, Italy
[4] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Unit Cell Therapy & Cryobiol, I-20122 Milan, Italy
[5] Univ Appl Sci & Arts Southern Switzerland, Dept Innovat Technol, SUPSI, CH-6928 Manno, Switzerland
关键词
Spinal cord injury; Hydrogels; Human mesenchymal stem cells; Extracellular matrix; Inflammation; Macrophages; EXTRACELLULAR-MATRIX; BONE-MARROW; DRUG-DELIVERY; STROMAL CELLS; REGENERATIVE MEDICINE; FUNCTIONAL RECOVERY; PROGENITOR CELLS; ADIPOSE-TISSUE; DIFFERENTIATION; REPAIR;
D O I
10.1016/j.biomaterials.2015.10.024
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Stem cell therapy with human mesenchymal stem cells (hMSCs) represents a promising strategy in spinal cord injury (SCI). However, both systemic and parenchymal hMSCs administrations show significant drawbacks as a limited number and viability of stem cells in situ. Biomaterials able to encapsulate and sustain hMSCs represent a viable approach to overcome these limitations potentially improving the stem cell therapy. In this study, we evaluate a new agarose/carbomer based hydrogel which combines different strategies to optimize hMSCs viability, density and delivery of paracrine factors. Specifically, we evaluate a new loading procedure on a lyophilized scaffold (soaked up effect) that reduces mechanical stress in encapsulating hMSCs into the hydrogel. In addition, we combine arginine-glycine-aspartic acid (RGD) tripeptide and 3D extracellular matrix deposition to increase the capacity to attach and maintain healthy hMSCs within the hydrogel over time. Furthermore, the fluidic diffusion from the hydrogel toward the injury site is improved by using a cling film that oriented efficaciously the delivery of paracrine factors in vivo. Finally, we demonstrate that an improved combination as here proposed of hMSCs and biomimetic hydrogel is able to immunomodulate significantly the pro-inflammatory environment in a SCI mouse model, increasing M2 macrophagic population and promoting a pro-regenerative environment in situ. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 50 条
  • [21] The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration
    Libro, Rosaliana
    Bramanti, Placido
    Mazzon, Emanuela
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 14 (04) : 3355 - 3368
  • [22] Human Pluripotent Stem Cells for Spinal Cord Injury
    Farzaneh, Maryam
    Anbiyaiee, Amir
    Khoshnam, Seyed Esmaeil
    CURRENT STEM CELL RESEARCH & THERAPY, 2020, 15 (02) : 135 - 143
  • [23] Treatment of Spinal Cord Injury: A Review of Engineering Using Neural and Mesenchymal Stem Cells
    Mortazavi, Martin M.
    Harmon, Olivia A.
    Adeeb, Nimer
    Deep, Aman
    Tubbs, R. Shane
    CLINICAL ANATOMY, 2015, 28 (01) : 37 - 44
  • [24] Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat
    Urdzikova, Lucia Machova
    Ruzicka, Jiri
    LaBagnara, Michael
    Karova, Kristyna
    Kubinova, Sarka
    Jirakova, Klara
    Murali, Raj
    Sykova, Eva
    Jhanwar-Uniyal, Meena
    Jendelova, Pavla
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (07): : 11275 - 11293
  • [25] Application of Human Umbilical Cord Mesenchymal Stem Cells in Spinal Cord Injury
    Yang, Peng
    Li, Yun
    Zhang, Jing-Tao
    Wang, Lin-Feng
    Shen, Yong
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2017, 7 (05) : 393 - 400
  • [26] Effects of cytokines and chemokines on migration of mesenchymal stem cells following spinal cord injury
    Li, Longyun
    Yang, Maoguang
    Wang, Chunxin
    Zhao, Qiheng
    Liu, Jian
    Zhan, Chuanguo
    Liu, Zhi
    Li, Xuepeng
    Wang, Weihua
    Yang, Xiaoyu
    NEURAL REGENERATION RESEARCH, 2012, 7 (14) : 1106 - 1112
  • [27] Application of Human Umbilical Cord Mesenchymal Stem Cells in Rat Spinal Cord Injury Model
    Sun, Xue-Cheng
    Wang, Hu
    Ma, Xu
    Xia, Hong-Fei
    ASAIO JOURNAL, 2023, 69 (06) : E256 - E264
  • [28] Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells
    Liu, Jing
    Han, Dongmei
    Wang, Zhidong
    Xue, Mei
    Zhu, Ling
    Yan, Hongmin
    Zheng, Xiaoli
    Guo, Zikuan
    Wang, Hengxiang
    CYTOTHERAPY, 2013, 15 (02) : 185 - 191
  • [29] Injectable Hydrogel To Deliver Bone Mesenchymal Stem Cells Preloaded with Azithromycin To Promote Spinal Cord Repair
    Wan, Yujie
    Lin, Yan
    Tan, Xie
    Gong, Lingyi
    Lei, Fei
    Wang, Changguang
    Sun, Xiaoduan
    Du, Xingjie
    Zhang, Zhirong
    Jiang, Jun
    Liu, Zhongbing
    Wang, Jingxuan
    Zhou, Xiaoling
    Wang, Shuzao
    Zhou, Xiangyu
    Jing, Pei
    Zhong, Zhirong
    ACS NANO, 2024, 18 (12) : 8934 - 8951
  • [30] Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial
    Hur, Junseok W.
    Cho, Tai-Hyoung
    Park, Dong-Hyuk
    Lee, Jang-Bo
    Park, Jung-Yul
    Chung, Yong-Gu
    JOURNAL OF SPINAL CORD MEDICINE, 2016, 39 (06) : 655 - 664