Generalized trace formula and asymptotics of the averaged Turan determinant for polynomials orthogonal with a discrete Sobolev inner product

被引:5
作者
Osilenker, Boris P. [1 ]
机构
[1] Moscow State Civil Engn Univ, Dept Math, Moscow 129337, Russia
基金
俄罗斯基础研究基金会;
关键词
Sobolev-type orthogonal polynomials; generalized trace formula; asymptotics of the averaged Turan determinant; generalized Jacobi matrix; Gegenbauer-Sobolev orthogonal polynomials;
D O I
10.1016/j.jat.2005.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a finite positive Borel measure supported on [- 1, 1] and introduce the discrete Sobolev-type inner product [f, g] = integral(1)(-1) f(x)g(x)d mu(x) + Sigma(K)(k=1) Sigma(Nk)(i=0) M(k,i)f((i))(a(k))g((i))(a(k)), where the mass points a(k) belong to [-1, 1], and M(k,i) > 0(i = 0, 1,..., N(k)). In this paper, we obtain generalized trace formula and asymptotics of the averaged Turan determinant for the Sobolev-type orthogonal polynomials. Asymptotics of the recurrence coefficients for symmetric Gegenbauer-Sobolev orthogonal polynomials is obtained. Trace formula and asymptotics of Turan's determinant for Gegenbauer-Sobolev orthogonal polynomials are also given. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 97
页数:28
相关论文
共 36 条
[1]  
ABRAMOWITZ M, 1977, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[3]  
[Anonymous], MATH USSR SB
[4]   Jacobi-Sobolev-type orthogonal polynomials: Second-order differential equation and zeros [J].
Arvesu, J ;
Alvarez-Nodarse, R ;
Marcellan, F ;
Pan, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 90 (02) :135-156
[5]   ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO AN INNER PRODUCT INVOLVING DERIVATIVES - ZEROS AND RECURRENCE RELATIONS [J].
BAVINCK, H ;
MEIJER, HG .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (01) :7-14
[6]   Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :23-42
[7]  
BAVINCK H, 1989, APPL ANAL, V33, P103
[8]  
Copson E.T., 1965, Asymptotic Expansions
[9]  
COURANT R, 1931, METHODEN MATH PHYS
[10]   ORTHOGONAL POLYNOMIALS, MEASURES AND RECURRENCE RELATIONS [J].
DOMBROWSKI, J ;
NEVAI, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :752-759