On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation

被引:7
作者
Cortissoz, Jean C. [1 ]
Montero, Julio A. [1 ]
Pinilla, Carlos E. [1 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
WEAK SOLUTIONS; REGULARITY; CRITERION;
D O I
10.1063/1.4867616
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show a new lower bound on the. H-3/2 (T-3) norm of a possible blow-up solution to the Navier-Stokes equation, and also comment on the extension of this result to the whole space. This estimate can be seen as a natural limiting result for Leray's blow-up estimates in L-p (R-3), 3 < p < infinity. We also show a lower bound on the blow-up rate of a possible blow-up solution of the Navier-Stokes equation in. H-5/2 (T-3), and give the corresponding extension to the case of the whole space. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 12 条
[1]   On the blow-up criterion of the periodic incompressible fluids [J].
Benameur, Jamel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (02) :143-153
[2]   On the blow-up criterion of 3D Navier-Stokes equations [J].
Benameur, Jamel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :719-727
[3]  
Chae D., 2009, COMMUN PART DIFF EQ, V34, P1269
[4]   A Lower Bound on Blowup Rates for the 3D Incompressible Euler Equation and a Single Exponential Beale-Kato-Majda Type Estimate [J].
Chen, Thomas ;
Pavlovic, Natasa .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (01) :265-280
[5]  
Doering C., 1995, APPL ANAL NAVIER STO
[6]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[7]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[8]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[9]   On Leray's self-similar solutions of the Navier-Stokes equations [J].
Necas, J ;
Ruzicka, M ;
Sverak, V .
ACTA MATHEMATICA, 1996, 176 (02) :283-294
[10]   ON THE REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS [J].
Pata, Vittorino .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :747-761