A Dai-Liao-type projection method for monotone nonlinear equations and signal processing

被引:10
作者
Ibrahim, Abdulkarim Hassan [1 ,3 ]
Kumam, Poom [1 ,2 ]
Abubakar, Auwal Bala [3 ,4 ]
Abdullahi, Muhammad Sirajo [5 ]
Mohammad, Hassan [4 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, SCL Fixed Point Lab 802, Sci Lab Bldg,126 Pracha Uthit Rd,Bang Mod, Bangkok 10140, Thailand
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Pretoria, Medunsa, South Africa
[4] Bayero Univ, Fac Phys Sci, Dept Math Sci, Kano, Nigeria
[5] Usmanu Danfodiyo Univ, Dept Math, Sokoto, Nigeria
关键词
nonlinear equations; unconstrained optimization; conjugate gradient method; projection method; compressive sensing; CONJUGATE-GRADIENT METHODS; FREE ITERATIVE METHOD; THRESHOLDING ALGORITHM; SYSTEMS; SPARSITY;
D O I
10.1515/dema-2022-0159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, inspired by the projection technique of Solodov and Svaiter, we exploit the simple structure, low memory requirement, and good convergence properties of the mixed conjugate gradient method of Stanimirovic(sic) et al. [New hybrid conjugate gradient and broyden-fletcher-goldfarbshanno conjugate gradient methods, J. Optim. Theory Appl. 178 (2018), no. 3, 860-884] for unconstrained optimization problems to solve convex constrained monotone nonlinear equations. The proposed method does not require Jacobian information. Under monotonicity and Lipschitz continuity assumptions, the global convergence properties of the proposed method are established. Computational experiments indicate that the proposed method is computationally efficient. Furthermore, the proposed method is applied to solve the l(1) -norm regularized problems to decode sparse signals and images in compressive sensing.
引用
收藏
页码:978 / 1013
页数:36
相关论文
共 54 条
[1]   A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control [J].
Abubakar, Auwal Bala ;
Malik, Maulana ;
Kumam, Poom ;
Mohammad, Hassan ;
Sun, Min ;
Ibrahim, Abdulkarim Hassan ;
Kiri, Aliyu Ibrahim .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (04)
[2]   A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Malik, Maulana ;
Ibrahim, Abdulkarim Hassan .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 :640-657
[3]   New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Ibrahim, Abdulkarim Hassan ;
Chaipunya, Parin ;
Rano, Sadiya Ali .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 :670-683
[4]   Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations With Convex Constraints [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Ibrahim, Abdulkarim Hassan .
IEEE ACCESS, 2021, 9 :92157-92167
[5]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[6]   AN EFFICIENT IMPLEMENTATION OF MERRILL'S METHOD FOR SPARSE OR PARTIALLY SEPARABLE SYSTEMS OF NONLINEAR EQUATIONS [J].
Bing, Yang ;
Lin, Gao .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :206-221
[7]  
Bovik Alan C, 2010, Handbook of Image and Video Processing
[8]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[9]   Some new efficient mean-variance portfolio selection models [J].
Dai, Zhifeng ;
Kang, Jie .
INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2022, 27 (04) :4784-4796
[10]   Forecasting stock market returns: New technical indicators and two-step economic constraint method [J].
Dai, Zhifeng ;
Dong, Xiaodi ;
Kang, Jie ;
Hong, Lianying .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2020, 53