Parameter estimation by contrast minimization for noisy observations of a diffusion process

被引:13
|
作者
Favetto, Benjamin [1 ]
机构
[1] Univ Paris 05, Lab MAP5, Paris, France
关键词
62F12; 62M09; discrete time noisy observations; parametric inference; hidden Markov models; diffusion process; contrast function;
D O I
10.1080/02331888.2013.828058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of unknown parameters in the drift and diffusion coefficients of a one-dimensional ergodic diffusion X when the observation Y is a discrete sampling of X with an additive noise, at times i delta, i=1, horizontal ellipsis , N. Assuming that the sampling interval tends to 0 while the total length-time interval tends to infinity, we prove limit theorems for functionals associated with the observations, based on local means of the sample. We apply these results to obtain a contrast function. The associated minimum contrast estimators are shown to be consistent. Some examples are discussed with numerical simulations.
引用
收藏
页码:1344 / 1370
页数:27
相关论文
共 50 条