Generalized uniformly close-to-convex functions of order γ and type β

被引:0
作者
Al-Oboudi, F. M. [1 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh, Saudi Arabia
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2014年 / 43卷 / 02期
关键词
Univalent functions; uniformly close-to-convex; uniformly quasi-convex; fractional differential operator; STARLIKE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of analytic functions f defined on the open unit disc satisfying Re{z(D(lambda)(n,alpha)f(z))'/D(lambda)(n,alpha)g(z)} > beta vertical bar z(D(lambda)(n,alpha)f(z))'/D(lambda)(n,alpha)g(z) - 1 vertical bar + gamma, is studied, where beta >= 0, -1 <= gamma < 1, beta + gamma >= 0. and g is a certain analytic function associated with conic domains. Among other results, inclusion relations and the coefficients bound are studied. Various known special cases of these results are pointed out. A subclass of uniformly quasi-convex functions is also studied.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
[31]   New extensions for classes of analytic functions associated with close-to-convex and starlike of order α [J].
Uyanik, Neslihan ;
Owa, Shigeyoshi .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :359-366
[32]   ON LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS [J].
Ali, Md Firoz ;
Vasudevarao, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) :1131-1142
[33]   Logarithmic coefficients for certain subclasses of close-to-convex functions [J].
U. Pranav Kumar ;
A. Vasudevarao .
Monatshefte für Mathematik, 2018, 187 :543-563
[34]   ON JANOWSKI CLOSE-TO-CONVEX FUNCTIONS ASSOCIATED WITH CONIC REGIONS [J].
Saliu, Afis ;
Noor, Khalida Inayat .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (04) :614-623
[35]   Bohr Phenomenon for Certain Close-to-Convex Analytic Functions [J].
Allu, Vasudevarao ;
Halder, Himadri .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (03) :491-517
[36]   Bohr Phenomenon for Certain Close-to-Convex Analytic Functions [J].
Vasudevarao Allu ;
Himadri Halder .
Computational Methods and Function Theory, 2022, 22 :491-517
[37]   Starlike and close-to-convex functions defined by differential inequalities [J].
Obradovic, M. ;
Ponnusamy, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) :2642-2648
[38]   Certain sharp estimates of Ozaki close-to-convex functions [J].
Kumar, Sushil ;
Pandey, Rakesh Kumar ;
Rai, Pratima .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (06)
[39]   Some properties of certain meromorphic close-to-convex functions [J].
Wang, Zhi-Gang ;
Sun, Yong ;
Xu, Neng .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :454-460
[40]   A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS [J].
Parida, Laxmipriya ;
Bulboaca, Teodor ;
Sahoo, Ashok Kumar .
HONAM MATHEMATICAL JOURNAL, 2024, 46 (03) :515-521