Circulant Type Matrices with the Sum and Product of Fibonacci and Lucas Numbers

被引:7
作者
Jiang, Zhaolin [1 ]
Gong, Yanpeng [2 ]
Gao, Yun [2 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276000, Shandong, Peoples R China
[2] Shandong Univ Technol, Inst Appl Math, Zibo 255049, Shandong, Peoples R China
关键词
ORDER DIFFERENTIAL-EQUATIONS; TOEPLITZ;
D O I
10.1155/2014/375251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Circulant type matrices have become an important tool in solving differential equations. In this paper, we consider circulant type matrices, including the circulant and left circulant and g-circulant matrices with the sum and product of Fibonacci and Lucas numbers. Firstly, we discuss the invertibility of the circulant matrix and present the determinant and the inverse matrix by constructing the transformation matrices. Furthermore, the invertibility of the left circulant and g-circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relation between left circulant, and g-circulant matrices and circulant matrix, respectively.
引用
收藏
页数:12
相关论文
共 27 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]   On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, Hala A. A. .
PHYSICS LETTERS A, 2006, 358 (01) :1-4
[3]   LIMITING SPECTRAL DISTRIBUTIONS OF SOME BAND MATRICES [J].
Basak, Anirban ;
Bose, Arup .
PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (01) :113-150
[4]   Limiting spectral distribution of a special circulant [J].
Bose, A ;
Mitra, J .
STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) :111-120
[5]   Poisson convergence of eigenvalues of circulant type matrices [J].
Bose, Arup ;
Hazra, Rajat Subhra ;
Saha, Koushik .
EXTREMES, 2011, 14 (04) :365-392
[6]   Spectral Norm of Circulant-Type Matrices [J].
Bose, Arup ;
Hazra, Rajat Subhra ;
Saha, Koushik .
JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) :479-516
[7]   Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers [J].
Bozkurt, Durmus ;
Tam, Tin-Yau .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) :544-551
[8]  
CLAEYSSEN JCR, 1988, LINEAR ALGEBRA APPL, V99, P41
[9]  
Davis P. J., 1979, Circulant Matrices
[10]  
Erbas C., 1995, MATH MAG, V68, P343