Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells

被引:59
作者
Campione, Salvatore [1 ,2 ,3 ]
Benz, Alexander [1 ,2 ]
Sinclair, Michael B. [1 ]
Capolino, Filippo [3 ]
Brener, Igal [1 ,2 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA
[3] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
关键词
SPLIT-RING RESONATORS; MAGNETIC METAMATERIALS; HARMONIC-GENERATION; OPTICAL-PROPERTIES; PATTERNED GAAS; SUSCEPTIBILITY; MICROSCOPY; LASER;
D O I
10.1063/1.4870072
中图分类号
O59 [应用物理学];
学科分类号
摘要
We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at similar to 30 THz and an orthogonally polarized resonance at the second harmonic frequency (similar to 60 THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be similar to 1.3 x 10(-2) W/W-2 -a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10 mu m). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 36 条
[1]  
Benz A, 2013, Opt Express, V21, P32572, DOI 10.1364/OE.21.032572
[2]   Strong coupling in the sub-wavelength limit using metamaterial nanocavities [J].
Benz, A. ;
Campione, S. ;
Liu, S. ;
Montano, I. ;
Klem, J. F. ;
Allerman, A. ;
Wendt, J. R. ;
Sinclair, M. B. ;
Capolino, F. ;
Brener, I. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Second-harmonic generation in GaAs:: Experiment versus theoretical predictions of χxyz(2) -: art. no. 036801 [J].
Bergfeld, S ;
Daum, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (03) :4
[4]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[5]   Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues [J].
Campagnola, PJ ;
Millard, AC ;
Terasaki, M ;
Hoppe, PE ;
Malone, CJ ;
Mohler, WA .
BIOPHYSICAL JOURNAL, 2002, 82 (01) :493-508
[6]   COUPLED-QUANTUM-WELL SEMICONDUCTORS WITH GIANT ELECTRIC-FIELD TUNABLE NONLINEAR-OPTICAL PROPERTIES IN THE INFRARED [J].
CAPASSO, F ;
SIRTORI, C ;
CHO, AY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (05) :1313-1326
[7]   Ultrafast optical parametric amplifiers [J].
Cerullo, G ;
De Silvestri, S .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (01) :1-18
[8]   Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure [J].
Chen, Xiyi ;
Nadiarynkh, Oleg ;
Plotnikov, Sergey ;
Campagnola, Paul J. .
NATURE PROTOCOLS, 2012, 7 (04) :654-669
[9]   Electronic structures and nonlinear optical coefficients of β-BaB2O4 [J].
Cheng, WD ;
Huang, JS ;
Lu, JX .
PHYSICAL REVIEW B, 1998, 57 (03) :1527-1533
[10]   OPTICAL 2ND-HARMONIC GENERATION AS A PROBE OF SURFACE-CHEMISTRY [J].
CORN, RM ;
HIGGINS, DA .
CHEMICAL REVIEWS, 1994, 94 (01) :107-125