The successful miniaturization of many spacecraft subsystems make CubeSats attractive candidates for evermore-demanding scientific missions. A three-cell CubeSat employing the miniature xenon ion thruster, which features high efficiency and impulse capability, yields a unique spacecraft that can be optimized for a variety of missions ranging from significant inclination changes in a low Earth orbit to lunar transfers. A nominal configuration of a high-Delta V CubeSat has a dry mass of approximately 6.3 kg, including a 0.75 kg payload, margins, and contingencies. Depending on the thruster and propellant tank configuration, this CubeSat is capable of delivering mission Delta V values from 1000 to over 7000 m/s, enabling low-Earth-orbit inclination change missions and lunar missions. A parametric analysis on a three-cell high-Delta V CubeSat bus revealed that a range of payload volumes (up to nearly 1.4 units) and masses (up to nearly 6 kg) can be accommodated depending on the Delta V requirements and mission type. Additionally, this analysis showed that a high-Delta V three-cell CubeSat in a 600 km low Earth orbit can be designed to provide an inclination change of over 80 deg.