A mesh-free pseudospectral approach to estimating the fractional Laplacian via radial basis functions

被引:17
作者
Rosenfeld, Joel A. [1 ]
Rosenfeld, Spencer A. [2 ]
Dixon, Warren E. [3 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Mech & Aerosp Engn, Nonlinear Controls & Robot NCR Lab, Gainesville, FL USA
关键词
Mesh-free methods; Fractional Laplacian; Wendland RBFs; Fractional calculus; Pseudospectral methods; Fractional Poissonequation; APPROXIMATION; EQUATIONS; DYNAMICS;
D O I
10.1016/j.jcp.2019.02.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the use of radial basis function (RBF) interpolants to estimate a function's fractional Laplacian of a given order through a mesh-free pseudospectral method. The mesh-free approach yields an algorithm that can be implemented in high dimensional settings without adjustment. Moreover, the fractional Laplacian is defined in terms of the Fourier transform, and the symmetry of RBFs can be exploited to simplify the estimation problem. Convergence rates are established for RBFs when the function whose fractional Laplacian to be estimated is compactly supported. Further results demonstrate convergence when a function is in the native space for a Wendland RBF (i.e. a Sobolev space) and satisfies a certain L-1 condition. Numerical experiments demonstrate the developed method by estimating the fractional Laplacian of several functions and by solving a fractional Poisson equation with extended Dirichlet condition in one and two dimensions. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:306 / 322
页数:17
相关论文
共 35 条
  • [1] [Anonymous], SURFACE FITTING MULT
  • [2] [Anonymous], 2007, MESHFREE APPROXIMATI
  • [3] [Anonymous], 2014, RECENT ADV RADIAL BA
  • [4] [Anonymous], 2005, Cambridge Monograph, Applied Comput. Math.
  • [5] A SPACE-TIME FRACTIONAL OPTIMAL CONTROL PROBLEM: ANALYSIS AND DISCRETIZATION
    Antil, Harbir
    Otarola, Enrique
    Salgado, Abner J.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) : 1295 - 1328
  • [6] Application of a fractional advection-dispersion equation
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1403 - 1412
  • [7] Bond S. D., 2015, GALERKIN RADIAL BASI, P1
  • [8] On approximate cardinal preconditioning methods for solving PDEs with radial basis functions
    Brown, D
    Ling, L
    Kansa, E
    Levesley, J
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (04) : 343 - 353
  • [9] A generalization of the Fourier pseudospectral method
    Carcione, Jose M.
    [J]. GEOPHYSICS, 2010, 75 (06) : A53 - A56
  • [10] First passage and arrival time densities for Levy flights and the failure of the method of images
    Chechkin, AV
    Metzler, R
    Gonchar, VY
    Klafter, J
    Tanatarov, LV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (41): : L537 - L544