Deep extreme learning machines: supervised autoencoding architecture for classification

被引:93
作者
Tissera, Migel D. [1 ]
McDonnell, Mark D. [1 ]
机构
[1] Univ S Australia, Computat & Theoret Neurosci Lab, Inst Telecommun Res, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
基金
澳大利亚研究理事会;
关键词
Extreme learning machine; Supervised learning; Autoencoder; Classifier; MNIST; Deep neural network; ALGORITHM; NEURONS;
D O I
10.1016/j.neucom.2015.03.110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for synthesising deep neural networks using Extreme Learning Machines (ELMS) as a stack of supervised autoencoders. We test the method using standard benchmark datasets for multiclass image classification (MNIST, CIFAR-10 and Google Streetview House Numbers (SVHN)), and show that the classification error rate can progressively improve with the inclusion of additional autoencoding ELM modules in a stack. Moreover, we found that the method can correctly classify up to 99.19% of MNIST test images, which surpasses the best error rates reported for standard 3-layer ELMs or previous deep ELM approaches when applied to MNIST. The approach simultaneously offers a significantly faster training algorithm to achieve its best performance (in the order of 5 min on a four-core CPU for MNIST) relative to a single ELM with the same total number of hidden units as the deep ELM, hence offering the best of both worlds: lower error rates and fast implementation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 2003, Neural engineering: Computation, representation, and dynamics in neurobiological systems
[2]  
[Anonymous], 2015, COMPUTER SCI
[3]   Silicon spiking neurons for hardware implementation of extreme learning machines [J].
Basu, Arindam ;
Shuo, Sun ;
Zhou, Hongming ;
Lim, Meng Hiot ;
Huang, Guang-Bin .
NEUROCOMPUTING, 2013, 102 :125-134
[4]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[5]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[6]   Extreme Learning Machines [J].
Cambria, Erik ;
Huang, Guang-Bin .
IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) :30-31
[7]  
Choudhary Swadesh, 2012, Artificial Neural Networks and Machine Learning - ICANN 2012. Proceedings of the 22nd International Conference on Artificial Neural Networks, P121, DOI 10.1007/978-3-642-33269-2_16
[8]   A Large-Scale Model of the Functioning Brain [J].
Eliasmith, Chris ;
Stewart, Terrence C. ;
Choo, Xuan ;
Bekolay, Trevor ;
DeWolf, Travis ;
Tang, Charlie ;
Rasmussen, Daniel .
SCIENCE, 2012, 338 (6111) :1202-1205
[9]   The SpiNNaker Project [J].
Furber, Steve B. ;
Galluppi, Francesco ;
Temple, Steve ;
Plana, Luis A. .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :652-665
[10]  
Galluppi F, 2012, 2012 INT JOINT C NEU, P1