On the number of generators of an algebra

被引:10
作者
First, Uriya A. [1 ]
Reichstein, Zinovy [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.crma.2016.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical theorem of Forster asserts that a finite module Mof rank <= n over a Noetherian ring of Krull dimension d can be generated by n + d elements. We prove a generalization of this result, with "module" replaced by "algebra". Here we allow arbitrary finite algebras, not necessarily unital, commutative or associative. Forster's theorem can be recovered as a special case by viewing a module as an algebra where the product of any two elements is 0. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 13 条
[1]  
[Anonymous], GALOIS COHOMOLOGY
[2]  
[Anonymous], 2004, TASTE JORDAN ALGEBRA
[3]  
[Anonymous], C PUBL AM MATH SOC
[4]  
[Anonymous], 1971, LECT NOTES MATH
[5]  
[Anonymous], INTRO NONASSOCIATIVE
[6]  
EISENBUD D, 1973, J ALGEBRA, V27, P278, DOI 10.1016/0021-8693(73)90106-3
[7]  
Forster Otto, 1964, MATH Z, V84, P80, DOI [10.1007/bf01112211, DOI 10.1007/BF01112211]
[8]  
Gille P., 2006, CAMB STUD ADV MATH, V101
[9]   Inner derivations of alternative algebras over commutative rings [J].
Loos, Ottmar ;
Petersson, Holger P. ;
Racine, Michel L. .
ALGEBRA & NUMBER THEORY, 2008, 2 (08) :927-968
[10]   ON AUTOMORPHISMS OF MATRIX INVARIANTS [J].
REICHSTEIN, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :353-371