Towards long-term prediction

被引:33
作者
Judd, K [1 ]
Small, M [1 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Nedlands, WA 6907, Australia
来源
PHYSICA D | 2000年 / 136卷 / 1-2期
基金
澳大利亚研究理事会;
关键词
longer-term predictions; nonlinear time-series; iterated predictor; prediction horizon;
D O I
10.1016/S0167-2789(99)00152-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a simple method of obtaining longer-term predictions from a nonlinear time-series, assuming one already has a reasonably good short-term predictor. The usefulness of the technique is that it eliminates, to some extent, the systematic errors of the iterated short-term predictor. The technique we describe also provides an indication of the prediction horizon. We consider systems with both observational and dynamic noise and analyse a number of artificial and experimental systems obtaining consistent results. We also compare this method of longer-term prediction with ensemble prediction. (C)2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 31 条
[1]   Nonlinear-time-series analysis of chaotic laser dynamics [J].
Abarbanel, HDI ;
Gills, Z ;
Liu, C ;
Roy, R .
PHYSICAL REVIEW A, 1996, 53 (01) :440-453
[2]  
[Anonymous], 1991, Handbook of genetic algorithms
[3]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[4]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[5]  
FARMER JD, 1988, EVOLUTION LEARNING C, P277, DOI DOI 10.1142/9789814434102_0011
[6]  
Fitzgerald R, 1997, NUMERICAL BAYESIAN M
[7]   ESTIMATION OF LYAPUNOV EXPONENTS OF DYNAMICAL-SYSTEMS USING A SPATIAL AVERAGE [J].
FROYLAND, G ;
JUDD, K ;
MEES, AI .
PHYSICAL REVIEW E, 1995, 51 (04) :2844-2855
[8]  
HAGGAN V, 1984, J TIME SER ANAL, V5, P103
[9]  
Huberman B., 1990, BACK PROPAGATION WEI, V1990
[10]  
Ikeguchi T, 1997, J INTELL FUZZY SYST, V5, P33