Stacks of cyclic covers of projective spaces

被引:51
作者
Arsie, A [1 ]
Vistoli, A [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40126 Bologna, Italy
关键词
algebraic stacks; Brauer-Severi schemes; equivariant Chow rings; Picard groups; quotient stacks; uniform cyclic covers;
D O I
10.1112/S0010437X03000253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define stacks of uniform cyclic covers of Brauer-Severi schemes, proving that they can be realized as quotient stacks of open subsets of representations, and compute the Picard group for the open substacks parametrizing smooth uniform cyclic covers. Moreover, we give an analogous description for stacks parametrizing triple cyclic covers of Brauer-Severi schemes of rank 1 that are not necessarily uniform, and give a presentation of the Picard group of the substacks corresponding to smooth triple cyclic covers.
引用
收藏
页码:647 / 666
页数:20
相关论文
共 9 条
[1]  
CATANESE F, 1984, J DIFFER GEOM, V19, P483
[2]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[3]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[5]  
LAUMON G, 2000, CHAMPS ALGEBRIQUE
[6]  
MIRANDA R, 1985, AM J MATH, V107, P113
[7]  
Mumford D., 1965, Arithmetical Algebraic Geometry, P33
[8]  
PARDINI R, 1991, J REINE ANGEW MATH, V417, P191
[9]   Appendix -: The Chow ring of M2 [J].
Vistoli, A .
INVENTIONES MATHEMATICAE, 1998, 131 (03) :635-644